Holy Cross College (Autonomous), Nagercoil Kanyakumari District, Tamil Nadu. Accredited with A⁺⁺ by NAAC - V Cycle (CGPA 3.53)

Affiliated to Manonmaniam Sundaranar University, Tirunelveli

Semester I - VI

UG Guidelines & Syllabus

DEPARTMENT OF PHYSICS

2023-2026 (With effect from the academic year 2025-2026)

> Issued from THE DEANS' OFFICE

Vision

Envisions training students for quality Physics education and holistic development empowered to meet challenges and embark on luxuriant careers.

Mission

- To produce competent graduates infused with professionalism, ethical values and social responsibility.
- > To prepare students to accentuate learning for life.
- > To foster a research environment, to keep up with global development in Science.
- > To evolve strategies for the growth of the department towards excellence.

Graduate Attributes

Graduates of our College develop the following attributes during the course of their studies.

Creative thinking:

Equipping students with hands-on-training through skill-based courses and promote startup.

> Personality development:

Coping with increasing pace and change of modern life through value education, awareness on human rights, gender issues and giving counselling for the needful.

> Environmental consciousness and social understanding:

Reflecting upon green initiatives and understanding the responsibility to contribute to the society; promoting social and cultural diversity through student training and service-learning programmes.

Communicative competence:

Offering effective communication skills in both professional and social contexts through bridge courses and activities of clubs and committees.

Aesthetic skills:

Engaging mind, body and emotions for transformation through fine arts, meditation and exercise; enriching skills through certificate courses offered by Holy Cross Academy.

> Research and knowledge enrichment:

Getting in-depth knowledge in the specific area of study through relevant core papers; ability to create new understanding through the process of critical analysis and problem solving.

> Professional ethics:

Valuing honesty, fairness, respect, compassion and professional ethics among students. The students of social work adhere to the *National Association of Social Workers Code of Ethics*

Student engagement in the learning process:

Obtaining extensive and varied opportunities to utilize and build upon the theoretical and empirical knowledge gained through workshops, seminars, conferences, industrial visits and summer internship programmes.

Employability:

Enhancing students in their professional life through Entrepreneur development, Placement & Career guidance Cell.

Women empowerment and leadership:

Developing the capacity of self-management, team work, leadership and decision making through gender sensitization programmes.

Programme Educational Objectives (PEOs)

PEOs	Upon completion of B.A/B.Sc. degree programme, the graduates	Mission
	will be able to	addressed
PEO1	apply appropriate theory and scientific knowledge to participate in	M1 & M2
	activities that support humanity and economic development nationally	
	and globally, developing as leaders in their fields of expertise.	

	empowerm						M4 8	
PEO.	knowledge and skills with the highest professional and ethical standards.							
	ramme Outco							
POs	Upon compl able to:	etion of B.	Sc. Degree	Program	me, the gr	aduates wil	l be Mapj with P	
PO1	obtain comp the relevant f			nd skills to	pursue hig	ther studies	in PEO	
PO2	create innova independence		o enhance e	ntrepreneu	rial skills	for economi	c PEO 2	2
PO3	reflect upon sustainable e			ke responsi	ble steps t	o build a	PEO	2
PO4	enhance lead face challeng career.							
PO5	communicate become com	•		orate succe	essfully wi	th peers to	PEO2 PEO3	
PO6	absorb ethication to highly cul	,		1	onal and so	ocial life lea	ding PEO2 PEO3	
PO7	participate in self-directed	-				self-paced a	nd PEO	
Prog	ramme Specif	ic Outcom	e (PSOs)	2	1			
PSOs	Upon compl of Physics w			Degree Pi	rogramme	, the gradu	ates Map with	
PSO1	understand t mechanics, t						ude PC)1
PSO2	develop ex applications		omprehensio	on of fu	Indamenta	and div	verse PO2 PO	
PSO3	apply knowl local, nation computing sl	al and glo	bal impact.	Apply th	ne critical	reasoning		
PSO4	analyze the theoretical ex a scientific c	observed expectations.	experimenta Communic	l data and cate approp	d relate tl	ne results v	, in	
PSO5	develop entro requirement ethical, legal	and becom	e self-depe	ndent. Une	derstand th			
Map	ping of POs a			· · · ·				
\sim ⁷	POs	PSO1	PSO 2	PSO3	PSO4	PSO5		
	PO1	S	S	S	S	S		

POs	PSO1	PSO 2	PSO3	PSO4	PSO5
PO1	S	S	S	S	S
PO2	М	S	S	S	S
PO3	М	М	М	S	S
PO4	М	М	S	S	S
PO5	М	М	S	S	S
PO6	М	М	S	S	S
PO7	S	S	S	S	S

Eligibility Norms for Admission Eligibility: 10 + 2 pattern

Those who seek admission to B.Sc. Physics Course must have passed the Higher Secondary Examinations conducted by the Board of Higher Secondary Examinations, Tamil Nadu with Physics and Mathematics subjects or examination recognized and approved by the Syndicate of Manonmaniam Sundaranar University, Tirunelveli.

Duration of the Programme: 3 years

Medium of Instruction: English

Passing Minimum

A minimum of 40% in the external examination and an aggregate of 40% is required. There is no minimum pass mark for the continuous internal assessment. **Components of the B.Sc. Physics Programme**

	Core-Theory Papers	8x100	800
Core	Core Research Project	1x100	100
Course	Core Lab Course	9 x 100	900
	Discipline Specific Elective-	4x 100	400
	Theory Papers		
	Total Marks		2200
	Theory	4x 100	400
Elective	Lab Course	2x 100	200
Course	Total Marks		600
	Total Marks		2800

Part III (Core and Elective)

• Core and Elective Lab Courses carry 100 marks each.

• Practical examination will be conducted at the end of each semester for Core and Elective Courses.

Course Structure

Distribution of Hours and Credits Curricular Courses:

Course	SI	S II	S III	S IV	S V	S VI	Tota	al
							Η	С
Part-I Language	6 (3)	6 (3)	6 (3)	6 (3)			24	12
Part-II English	6 (3)	6 (3)	6 (3)	6 (3)			24	12
Part-III								
Core Course	5 (5)+	5 (5)+	5 (5)+	5 (5)+	5 (4)+ 5 (4)+	6(5) + 6(5) +	70	62
Core Lab Course Core Research Project	3 (3)	3 (3)	3 (3)	3 (3)	5(4) 5(4)	6(4)		
Elective /Discipline Specific Elective Courses	4 (3)+ 2 (2)	4 (3)+ 2 (2)	4 (3)+ 2 (2)	4 (3)+ 2 (2)	4 (3)+ 4 (3)	5(3)+ 5 (3)	42	32
Part-IV	•	•		•				-
Non-major Elective	2 (2)	2 (2)					4	4
Skill Enhancement Course		2 (2)	2(2) + 2(2)	2 (2)			8	8
Foundation Course	2 (2)						2	2

Environmental Studies				2 (2)			2	2
Internship					(2)		-	2
Professional Competency					2 (2)	2 (2)	4	4
Skill								
Total	30 (23)	30 (23)	30 (23)	30 (23)	30 (26)	30 (22)	180	140
Co-curricular Courses								
Course	SI	S II	SIII	S IV	S V	S VI	To	tal
LST (Life Skill Training)	-	(1)	-	(1)			2	\sim
SDT (Certificate Course)	(1)						1	
Field Project		(1)					1	<i>Y</i>
Specific Value-added Course	(1)		(1)				2	
Generic Value-added Course				(1)		(1)	2	
MOOC			(2))			2	
Student Training (ST):				(1)		\mathbf{i}	1	
Clubs & Committees / NSS						•		
Community Engagement Activity – RUN				(1)	SP.		1	
Human Rights, Justice and				0	(1)		1	
Ethics								
Gender Equity and			^			(1)	1	
Inclusivity			XL	×				
Total							14	

Total number of Compulsory Credits = Academic credits + Non-academic credits: 140 + 14 COURSES OFFERED

SEMESTER I

Course	Course Code	Title of the Course	Credits	Hours /Week
		Language:		
Part I	TU231TL1	Tamil	3	6
	FU231FL1	French		
	EU241EL1	English: A Stream		
Part II	EU241EL2	English: B Stream	3	6
	EU241EL3	English: C Stream		
	PU231CC1	Core Course I: Properties of Matter and	5	5
		Acoustics		
	PU231CP1	Core Lab Course I: General Physics Lab I	3	3
Part III	PU231EC1	Elective Course I: Allied Physics for	3	4
		Mathematics–I		
	PU231EP1	Elective Lab Course I: Allied Physics Practical	2	2
Ď		for Mathematics–I		
	PU231NM1	Non-Major Elective NME I: Physics for	2	2
Part IV		Everyday Life		
	PU231FC1	Foundation Course FC: Introductory Physics	2	2
		Total	23	30
		SEMESTER II		
Course	Course Code	Title of the Course	Credits	Hours/

				Week
	TU232TL1	Language: Tamil		
Part I	FU232FL1	French	3	6
	EU242EL1	English: A Stream		
Part II	EU242EL2	English: B Stream	3	6
	EU242EL3	English: C Stream		
	PU232CC1	Core Course II: Heat, Thermodynamics and	5	5
		Statistical Physics		
	PU232CP1	Core Lab Course II: General Physics Lab II	3	3
Part III	PU232EC1	Elective Course II: Allied Physics for	3	4
		Mathematics – II		
	PU232EP1	Elective Lab Course II: Allied Physics Practical for	2	2
		Mathematics-II		
	PU232NM1	Non-Major Elective NME II: Physics of Music	2	2
D4 IX7	PU232SE1	Skill Enhancement Course SECI:	2	2
Part IV		Digital Photography	1	
		Total	23	30
		SEMESTER III	•	•
	Course			Hours/

Course	Course Code	Title of the Course	Credits	Hours/ Week
Part I	TU233TL1 FU233FL1	Language: Tamil French	3	6
Part II	EU243EL1 EU243EL2 EU243EL3	English: A Stream English: B Stream English: C Stream	3	6
	PU233CC1	Core Course III: General Mechanics and Classical Mechanics	5	5
Part III	PU233CP1	Core Lab Course III: General Physics Lab III	3	3
Fart III	PU233EC1	Elective Course III: Allied Physics for Chemistry – I	3	4
	PU233EP1	Elective Lab Course III: Allied Physics Practical for Chemistry – I	2	2
Dout IV	PU233SE1	Skill Enhancement Course SEC-II: (Indian Knowledge System) Astrophysics	2	2
Part IV	UG23CSE2	Skill Enhancement Course SEC-IV: Digital Fluency	2	2
		Total	23	30

SEMESTER IV

		Total	23	30
		SEMESTER IV		
Course	Course Code	Title of the Course	Credits	
				Week
		Language:		
Part I	TU234TL1	Tamil	3	6
	FU234FL1	French		
	EU244EL1	English: A Stream	3	6
Part II	EU244EL2	English: B Stream		
	EU244EL3	English: C Stream		

	PU234CC1	Core Course IV: Optics and Spectroscopy	5	5
	PU234CP1	Core Lab Course IV: General Physics Lab IV	3	3
	PU234EC1	Elective Course IV: Allied Physics for Chemistry–II	3	4
	PU234EP1	Elective Lab Course IV: Allied Physics Practical for	2	2
Part III		Chemistry–II		
	UG23CSE1	Skill Enhancement Course SEC III: Fitness for	2	2
		Wellbeing		
Part IV	UG234EV1	Environmental Studies(EVS)	2	2
		Total	23	30

Course	Course	Title of the Course	Credits	Hours/
	Code			Week
	PU235CC1	Core Course V: Atomic Physics and Lasers	4	5
	PU235CC2	Core Course VI: Relativity and Quantum	4	5
		Mechanics		
	PU235CP1	Core Lab Course V: General Physics Lab V	2	3
	PU235CP2	Core Lab Course VI: General Physics Lab VI	2	2
	PU235RP1	Core Research Project	4	5
	PU235DE1	Discipline Specific Elective I: a) Energy Physics		
		Discipline Specific Elective I: b) Mathematical		
	PU235DE2	Physics	3	4
Part III		Discipline Specific Elective I:c) Electricity,		
	PU235DE3	Magnetism and Electromagnetism		
	PU235DE4	Discipline Specific Elective II: a) Material		
		Science		
	PU235DE5	Discipline Specific Elective II: b) Nano Science	3	4
	PU235DE6	Discipline Specific Elective II: c) Medical		
		Instrumentation		
	UG235PS1	Professional Competency Skill I: Career Skills	2	2
Part IV	PU235IS1	Internship	2	-
		Total	26	30

SEMESTER VI

Course	Course Code	Title of the Course		Hours/ Week
	PU236CC1 Core Course VII: Nuclear and Particle Physics			6
	PU236CC2	Core Course VIII: Solid State Physics	5	6
C	PU236CP1	Core Lab Course VII: General Physics Lab VII	2	2
Part III	PU236CP2	Core Lab Course VIII: General Physics Lab VIII	1	2
	PU236CP3	Core Lab Course IX: General Physics Lab IX	1	2
\sim	PU236DE1	E1 Discipline Specific Elective III:		
		a) Numerical Methods		
	and C++ Programming		3	5
	PU236DE2	Discipline Specific Elective III:		
		b)Digital Electronics and Microprocessor 8085		
		Discipline Specific Elective III:		
	PU236DE3	c) Communication Systems		
	PU236DE4	Discipline Specific Elective IV: a) Electronics		
Part IV	PU236DE5	Discipline Specific Elective IV: b) Geo Physics	3	5

	TOTAL	140	180
	Total	22	30
	Basic Electrical Circuit Troubleshooting		
PU236PS1	Professional Competency Skill II:	2	2
PU236DE6	Discipline Specific Elective IV: c) Bio Physics		

Co-Curricular Courses

Part	Semester	Code	Title of the Course	Credit
	I & II	UG232LC1	Life Skill Training I:	
			Catechism	
		UG232LM1	Life Skill Training I: Moral	
	Ι	UG231C01 -	Skill Development Training	1
			(SDT) - Certificate Course	
	II	PU232FP1	Field Project	1
	I & III	PU231V01 -	Specific Value-added Course	1+1
	VI	UG236OC1 &	MOOC	2
		UG236OC2		
	III & IV	UG234LC1	Life Skill Training II:	1
			Catechism	
		UG234LM1	Life Skill Training II: Moral	
Part V	IV & VI	GVAC2401 -	Generic Value-added Course	1 + 1
	I - IV	UG234ST1	Student Training Activity –	1
		A	Clubs & Committees / NSS	
	IV	UG234CE1	Community Engagement	1
			Activity - RUN	
	V	UG235HR1	Human Rights, Justice and	1
			Ethics	
	VI	UG236GE1	Gender Equity and Inclusivity	1
Total				14

Specific Value-added Course

Semester	Course code	Title of the course	Credits	Total hours
I	PU231V01	Photoshop	1	30
I	PU231V02	Basics of Energy Sources	1	30
I	PU231V03	Physics of Home Appliances	1	30
III	PU233V01	Fundamentals of MS- Excel	1	30
III	PU233V02	Applications of Laser	1	30
III	PU233V03	Medical Imaging	1	30

Self-Learning Course

Semester	Title of the Course	Course Code
III / V	Public Service Examination: Physics – I	PU234SL1/PU235SL1
IV/ VI	Public Service Examination : Physics – II	PU234SL1/PU236SL1

Examination Pattern

Each paper carries an internal component. There is a passing minimum for external component. A minimum of 40% in the external examination and an aggregate of 40% is required.

100

i. Part I – Tamil, Part II – English, Part III - (Core Course/ Elective Course)

Ratio of Internal and External= 25:75

Continuous Internal Assessment (CIA)

Internal Components and Distribution of Marks

Components			Marks
Internal test (2) - 40 marks			10
Quiz (2) - 20 marks			5
Assignment: (Model Making, Exhibition, Role Play, Seminar, Group Discussion, Problem Solving, Class Test, Open Book Test etc. (Minimum three items per course should be included in the syllabus & teaching plan) (30 marks)			
Total			
Question Pattern			
Internal Test	Marks	External Exam	Marks
Part A 4 x 1(No choice)	4	Part A 10 x 1 (No choice)	10
Part B 2 x 6 (Internal choice)	12	Part B 5 x 6 (Internal choice)	30
Part C 2 x 12 (Internal choice)	24	Part C 5x 12 (Internal choice)	60

Total

Total ii. Lab Course:

Ratio of Internal and External= 25:75

Total: 100 marks

Internal Components and Distribution of Marks

Internal Components	Marks
Performance of the Experiments	10
Regularity in attending practical and submission of records	5
Record	5
Model exam	5
Total	25

40

Question pattern 🔨

External Exam	Marks
Major Practical	
Minor Practical / Spotters /Record	75
Total	75

iii. Core Research Project

Ratio of Internal and External = 25:75

Components	Marks
Internal	25
External	
Core Research Project Report	40
Viva voce	35
Total	100

Part - IV

i. Non-major Elective, Skill Enhancement Course I & II, Foundation Course, Professional Competency Skill

Ratio of Internal and External = 25:75

Internal Components and Distribution of Marks

С	Components	
In	ternal test $(2) - 25$ marks	10

		5	
Exhibition	n, Role Play, Album, Group	10	
items per c	course)		
		25	
Marks	External Exam	Marks	
4	Part A 5 x 2 (No Choice)	10	
12	Part B 5 x 4 (Open choice any	20	
	Five out of Eight)		
9	Part C 5 x 9 (Open choice any	45	
	Five out of Eight)		
25	Total	75	
e III & IV			
	Marks		
	15	15	
Lab Assessment (5 x 2)		10	
Total External			
	50		
Procedure		25	
Total Fitness and Wellbeing			
	Marks		
	15		
Quiz (15 x 1) Exercise (2 x 5)			
Total			
Written Test: Part A: Open choice - 5 out			
	50		
choice – 5	out		
	75		
	Marks 4 12 9 25 e III & IV	4Part A $5 \ge 2$ (No Choice)12Part B 5 x 4 (Open choice any Five out of Eight)9Part C 5 x 9 (Open choice any Five out of Eight)25TotalMarks10151025Marks10Marks1515151515151515151515151515151515151625 <td col<="" td=""></td>	

iii. Environmental Studies

Internal Components	Marks
Project Report	15
Viva voce	10
Total	25

Internal Components	Marks
Project Report	15
Viva voce	10
Total	25
External Exam	Marks
Part A 5 x 2 (No Choice)	10
Part B 5 x 4 (Open choice any Five out of Eight)	20
Part C 5 x 9 (Open choice any Five out of Eight)	45
Total	75

Components		Ma	rks		
Industry Contribution		5	0		
Report & Viva-voce	5	0			
Total		10	0		
Professional Competency Skill	I				
Internal Components			Marks		
Test – 20 marks			5		
Individual Activity			10		
Group Activity			10		
Total			25		
External Exam			Marks		
Part A 5 x 2 (No Choice)			10		
Part B 5 x 4 (Open choice any Five	out of Eig	ght)	20		
Part C 5 x 9 (Open choice any Five	out of Eig	ght)	45		
Total			75		
Co-Curricular Courses:			3		
i. Life Skill Training: Catechism	& Moral				
Human Rights, Justice and Ethi	ics				
Gender Equity and Inclusivity					
Internal Components					
Component		N	larks		
Project - Album on current issue	s		25		
Group Activity		25			
Total			50		
External Components					
Component	4 - 6 0		Marks		
Written Test: Open choice – 5 ou Total	it of 8 que	estions (5 x 10)	50		
	Contifico	to Courses	50		
ii. Skill Development Training -			Ira		
Components Attendance & Participation		<u> </u>			
Skill Test		50			
Total		<u> </u>			
iii. Field Project:	I	10	U		
Components		М	arks		
Field Work			50		
Field Project Report & Viva-vo	50				
Total	.00				
iv. Specific Value-Added Courses	& Generi				
Components			arks		
Internal			25		
1110/11101	<u> </u>		75		
External					
External Total					
Total	1bs and (1	00		
Total v. Student Training Activity: Clu		1 Committees			
Total		1 Committees			

Component	Marks
Attendance	25

	Participation		75			
	Total		100			
vi	vi. Community Engagement Activity: Reaching the Unreached Neighbourhood (RUN					
ſ	Components		Marks			
Ī	Attendance & Participation		50			

Attendance & Participation	50
Field Project	50
Total	100

vii. Self Learning Course

Ratio of Internal and External = 25:75

Internal Test	Marks	External Exam	Marks
Part A 7 x 1 (No Choice)	7	Part A 15 x 1(No Choice)	15
Part B 3 x 2 (No Choice)	6	Part B 10 x 2 (No Choice)	20
Part C 3 x 4 (No Choice)	12	Part C 10x 4 (No Choice)	40
Total	25	Total	75

Outcome Based Education (OBE)

(i) Knowledge levels for assessment of Outcomes based on Blooms Taxonomy

S.	Level	Parameter	Description
No.			NY.
1	KI	Knowledge/Remembering	It is the ability to remember the previously learned
2	K2	Comprehension/	The learner explains ideas or concepts
		Understanding	
3	K3	Application/Applying	The learner uses information in a new way
4	K4	Analysis/Analysing	The learner distinguishes among different parts
5	K5	Evaluation/Evaluating	The learner justifies a stand or decision
6	K6	Synthesis /Creating	The learner creates a new product or point of view

(ii) Weightage of K – Levels in Question Paper Number of questions for each cognitive level:

Programme	Assessment	Lower Order Thinking							Higher order thinking			Total number of		
-	Part	K1			K2			K3			K4 ,]	K5,]	K6	questions
		Α	В	С	Α	B	С	Α	B	С	Α	B	С	-
I UG	Internal	2	1	-	1	1	1	1	-	1	-	-	-	8
	External	5	2	1	3	2	2	2	1	2	-	-	-	20
II UG	Internal	1	1	-	1	1	1	1	-	1	1	-	-	8
	External	5	1	1	4	1	1	-	3	1	1	-	2	20
III UG	Internal	1	-	-	1	-	1	1	1	1	1	1	-	8
	External	5	1	1	4	1	1	-	3	1	1	-	2	20

The levels of assessment are flexible and it should assess the cognitive levels and outcome attainment.

Evaluation

- i. The performance of a student in each course is evaluated in terms of percentage of marks with a provision for conversion to grade points.
- ii. Evaluation of each course shall be done by Continuous Internal Assessment (CIA) by the course teacher as well as by an end semester examination and will be consolidated at the end of the semester.
- iii. There shall be examinations at the end of each semester, for odd semesters in October/November; for even semesters in April/ May.

- iv. A candidate who does not pass the examination in any course(s) shall be permitted to reappear in such failed course(s) in the subsequent examinations to be held in October/ November or April/May. However, candidates who have arrears in practical examination shall be permitted to reappear for their areas only along with regular practical examinations in the respective semester.
- v. Viva-voce: Each project group shall be required to appear for Viva -voce examination in defence of the project.
- vi. The results of all the examinations will be published in the college website.

Conferment of Bachelor's Degree

A candidate shall be eligible for the conferment of the Degree of Bachelor of Arts / Science / Commerce only if the minimum required credits for the programme there of (140 + 18 credits) is earned.

Grading System

For the Semester Examination:

Calculation of Grade Point Average for End Semester Examination:

GPA = <u>Sum of the multiplication of grade points by the credits of the course</u>

Sum of the credits of the courses (passed) in a semester

For the entire programme:

Cumulative Grade Point Average (CGPA) $\Sigma_n \Sigma_i C_{ni} G_{ni} / \Sigma_{ni} \Sigma_i C_{ni}$

CGPA = <u>Sum of the multiplication of grade points by the credits of the entire programme</u>

Sum of the credits of the courses of the entire programme

where

a	
Ci	- Credits earned for course i in any semester
C_1	- Creatis carried for course i in any semester

G_i - Grade point obtained for course i in any semester

- semester in which such courses were credited

Final Result

n

Conversion of Marks to Grade Points and Letter Grade

Range of Marks	Grade Points	Letter Grade	Description
90-100	9.0-10.0	0	Outstanding
80-89	8.0-8.9	D+	Excellent
75-79	7.5-7.9	D	Distinction
70-74	7.0-7.4	A+	Very Good
60-69	6.0-6.9	A	Good
50-59	5.0-5.9	В	Average
40-49	4.0-4.9	C	Satisfactory
00-39	0.0	U	Re-appear
ABSENT	0.0	AAA	ABSENT

Overall Performance

CGPA	Grade	Classification of Final Result
9.5-10.0	O+	Einst Class Examplemy*
9.0 and above but below 9.5	0	First Class – Exemplary*
8.5 and above but below 9.0	D++	
8.0 and above but below 8.5	D+	First Class with Distinction*
7.5 and above but below 8.0	D	
7.0 and above but below 7.5	A++	Einst Class
6.5 and above but below 7.0	A+	First Class
6.0 and above but below 6.5	А	
5.5 and above but below 6.0	B+	Second Class

5.0 and above but below 5.5	В	
4.0 and above but below 5.0	С	Third Class
0.0 and above but below 4.0	U	Re-appear

*The candidates who have passed in the first appearance and within the prescribed semester are eligible for the same.

			1			1		1		Marilar	,
	Course	L	Т	Р	S	Credits	Inst.	Total		Marks	
	Code						Hours	Hours	CIA	External	Total
I	PU231CC1	5	-	-	-	5	5	75	25	75	100
	Pre-requisites	s:									
	Basic l	know	ledge	e on P	ower,	Force, Ne	wton's La	ws of Me	otion		
	Learning Obj	jectiv	es:								
	1. To	Stud	y the	e prop	erties	of matter	leads to in	nformatio	on whic	h is of prac	tical value
	tot	the ph	iysic	ists.						_	
	2. To	prov	vide	an in	forma	ation abou	it the int	ernal for	ces wl	hich act be	tween the
	cor	nstitu	ent p	arts of	f the s	substance.					
			1				Outcome	s			
On	the successful	com	pleti	ion of	the c	ourse, stu	dent will	be able t	0:		
1	relate elasti		_							orking of	K1 &
	torsion pen							2		č	K2
2	-			f bend	ling o	f beams an	d analyze	the expr	ession.	quantify an	
	understand		-		-		j		0,,,,	1	K3
	explain the					viscosity of	fluid and	support	the inte	resting	K2 &
3	phenomena					-				-	K3
	solution to				-		soup min	s provide	un unu	logue	110
	analyze sim	•	-				tically an	d annly t	hem		K1 &
4	understand									ency of	KI C K3
	vibration. S			-					-	ency of	IX3
5		-	-							dingo with	K2 &
3	understand			-					0	0	
	U						0			life, especia	Illy K3
	in medical	rield	and a	issimi	late d	interent me	etnoas of p	productio	n of uli	trasonic	
	waves.										

SEMESTER I

CORE COURSE I: PROPERTIES OF MATTER AND ACOUSTICS

K1 - Remember; K2 - Understand; K3 - Apply

Units	Contents	No. of Hours
Ι	ELASTICITY: Hooke's law – stress-strain diagram – elastic constants – Poisson's ratio – relation between elastic constants and Poisson's ratio – work done in stretching and twisting a wire – twisting couple on a cylinder – rigidity	15
	modulus by static torsion- torsional pendulum (with and without masses)	
П	BENDING OF BEAMS: Cantilever– expression for Bending moment – expression for depression at the loaded end of the cantilever– oscillations of a cantilever – expression for time period – experiment to find Young's modulus – non-uniform bending– experiment to determine Young's modulus by Koenig's method – uniform bending – expression for elevation – experiment to determine Young's modulus using microscope	15
ш	FLUID DYNAMICS: Surface tension: definition – molecular forces– excess pressure over curved surface – application to spherical and cylindrical drops and bubbles – determination of surface tension by Jaegar's method–variation of surface tension with temperature Viscosity: definition – streamline and turbulent flow – rate of flow of liquid in a capillary tube – Poiseuille's formula –corrections – terminal velocity and Stoke's formula– variation of viscosity with temperature	15

IV	 WAVES AND OSCILLATIONS: Simple Harmonic Motion (SHM) – differential equation of SHM – graphical representation of SHM – composition of two SHM in a straight line and at right angles – Lissajous's figures- free, damped, forced vibrations – resonance and Sharpness of resonance. Laws of transverse vibration in strings –sonometer – determination of AC frequency using sonometer –determination of frequency using Melde's string apparatus 	15
V	ACOUSTICS OF BUILDINGS AND ULTRASONICS: Intensity of sound – decibel – loudness of sound –reverberation – Sabine's reverberation formula (derivation) – acoustic intensity – factors affecting the acoustics of buildings. Ultrasonic waves: production of ultrasonic waves – Piezoelectric crystal method – magnetostriction effect –application of ultrasonic waves	15
	Total	75

Self- study | Elastic constants; Oscillations of a cantilever;

Molecular forces; Lissajous's figures; Properties of ultrasonic waves

Textbooks

- 1. Mathur, D, S. 2010. Elements of Properties of Matter, S.Chand& Co.
- 2. BrijLal, Subrahmanyam, N. 2003. Properties of Matter, S. Chand & Co
- 3. Khanna, D.R. Bedi, R.S. 1969. Textbook of Sound, Atma Ram & Sons
- 4. BrijLal and Subrahmanyam, N. 1995. A Text Book of Sound, Second revised edition, Vikas Publishing House.
- 5. Murugesan, R. 2012. Properties of Matter, S. Chand & Co.

Reference Books

- 1. Smith, C.J. 1960. General Properties of Matter, Orient Longman Publishers
- 2. Gulati, H.R. 1977. Fundamental of General Properties of Matter (Fifth edition), R. Chand & Co.
- 3. French, A.P. 1973. Vibration and Waves, MIT Introductory Physics, Arnold Herrmann India.

Web Resources

- 1. https://www.biolinscientific.com/blog/what-are-surfactants-and-how-do-theywork
- https://www.youtube.com/watch?v=m4u-SuaSu1s&t=3s
 http://www.sound-physics.com/
- 4. https://www.biolinscientific.com/blog/what-are-surfactants-and-how-do-theywork
- 5. https://learningtechnologyofficial.com/category/fluid-mechanics-lab/6. http://hyperphysics.phy-astr.gsu.edu/hbase/permot2.html

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	2	2	3	2	2	3	2	2	1	1
CO2	2	3	3	3	2	2	3	3	3	2	1	1
CO3	3	2	3	2	3	3	2	3	2	2	1	1
CO4	3	3	3	3	3	2	3	3	2	3	2	1
CO5	2	2	3	3	2	3	3	3	2	2	3	2
TOTAL	13	13	14	15	13	12	13	15	11	11	8	6
AVERAGE	2.6	2.6	2.8	3	2.6	2.4	2.6	3	2.2	2.2	1.8	1.6

	C	OR	E LA.	R CO	JURSE I: (JENERA	L PHYS	ICS L	AB I	
Course	L	Т	Р	S	Credits	Inst.	Total		Marks	
Code						Hours	Hours	CIA	External	Total
PU231CP1	-	-	3	-	3	3	45	25	75	100
Pre requisite	:									
Knowledge of	n basi	c Phy	ysics	and A	Arithmetics					

SEMESTER I CORE LAB COURSE I: GENERAL PHYSICS LAB I

Learning Objectives:

- 1. To apply various physics concepts to understand Properties of Matter, set up experimentation to verify theories.
- 2. To do error analysis and correlate results

Course Outcomes

On the su	uccessful completion of the course, students will able to:	
1.	understand the strength of material using Young's modulus.	K2
2.	acquire knowledge of thermal behaviour of the materials.	K1
3.	analyze the physical principle involved in the various instruments	K4
4.	understand the scientific method and an ability to apply the scientific method in practice.	K2

K1 - Remember; K2 - Understand; K4 - Analyze;

Contents

(Any Eight Experiments)

- 1. Determination of Young's modulus by uniform bending load depression graph.
- 2. Determination of Young's modulus by non-uniform bending scale & telescope.
- 3. Determination of rigidity modulus without mass using Torsional pendulum.
- 4. Determination of rigidity modulus with masses using Torsional pendulum.
- 5. Determination of surface tension & interfacial surface tension by drop weight method.
- 6. Determination of co-efficient of viscosity by Stokes' method terminal velocity.
- 7. Determination of coefficient of viscosity by Variable Pressure Head Burette method.
- 8. Comparison of coefficient of viscosity of two liquids by Burette method.
- 9. Determination of moment of inertia of an irregular body.
- 10. Verification of parallel axes theorem on moment of inertia.
- 11. Verification of perpendicular axes theorem on moment of inertia.
- 12. Determination of Young's modulus by stretching of wire with known masses.
- 13. Verification of Hook's law by stretching of wire method.
- 14. Determination of Young's modulus by cantilever load depression graph.
- 15. Determination of Young's modulus by cantilever oscillation method
- 16. Determination of rigidity modulus by static torsion.
- 17. Determination of Y, n and K by Searle's double bar method.
- 18. Determination of surface tension of liquid by Capillary rise method.
- 19. Determination of critical pressure for streamline flow.
- 20. Determination of Poisson's ratio of rubber tube.
- 21. Determination of radius of capillary tube by mercury pellet method.

Reference Books

- 1. Manual prepared by the department
- 2. Ouseph, C, C., Rao, U, J. and Vijayendran, V. 2007. Practical Physics and Electronics. S. Viswanathan, Pvt., Ltd. Chennai.

Cou				UUN	<u>) []:</u>	ALLIED	Inst.	Total	MATHEN	Marks	•1
Cou		L	Т	P	S	Credits	Hours	Hours	CIA	Externa	l Total
PU231		4	_	_	_	3	4	60	25	75	100an 100
Pre-re		-				0	-	00	20	10	100
	owledg		basic	Physic	s						
Learn	-			- 11 510	2						
	<u> </u>	•		rincipl	es of	Physics					
	-	-	-	-		hysics in d	lay-to-day	y life			
		-		-		Cour	se Outco	mes			
On the	success	sful	compl	etion o	of the	course, st	tudent w	ill be ab	le to:	(A	
1	acquire	kno	wledge	e on el	emen	tary ideas	of waves	, propert	ies of matte	er,	K1 &
1 (electric	ity a	nd mag	gnetisr	n, ele	ctronics					K2
2	analyze	the	concep	pts of u	ıltras	onics, surf	ace tensio	on and st	udy their		K3
	applica	tions	s in the	medic	al fie	eld.				Y	
3 ⁱ	interpre	et the	e real-l	ife solı	ıtion	using cond	cepts of e	lectricity	, magnetisi	n, and	K2
5 (electror	nics	in Digi	ital Ind	ia.						
4 8	apply th	heir (depth k	knowle	dge	of Physics	in day to	day life.	\mathbf{Q}		K3
	develor	the	ir knov	vledge	to ca	urry out the	e practica	l by appl	ying these	concepts	K3
	of Phys			0		J	1		<i>, , , , , , , , , ,</i>	I I I	_
			er: K2	- Und	erstar	nd; K3 - A	pply	Y			
Unit			,			Conte					No. of
											Hours
	Wave	es, O) scillat	tions a	nd U	ltrasonics	N I				
	Simp	le ha	armoni	ic moti	ion (SHM) – c	compositi	on of tw	o SHMs a	at right	
	angle	s (p	eriods	in the	ratio	o 1:1) – I	Lissajous	figures	– uses – 1	aws of	
	transv	verse	e vibra	tions of	of str	ings – det	erminatio	on of AC	frequency	using	
Ι									- produc		12
	-								medical f		
				0			0	0	sonics in de	•	
			-				lvantages	of noni	nvasive sur	gery –	
			<u> </u>	een ch		ry.					
II		7		Matter					C		12
			-				-		ry of non-ι		
									uniform be		
		U .						a wire	- determina	ation of	
		•		•		nal pendul			Haal 1-	:+	
			•						tical veloc	•	
				visco irette r	-		mes Ioi	inula –	compariso	DI OI	
						,	ular theo	rv dr	oplets forn	nation	
								•	droplets, s		
	-					facial surfa		-	aropicio, s	u11 v u —	
	-			nod – nodyn							12
				•			norous nl	llg exner	iment – the		14
III									Linde's pro		
		-				-			e– importa		
									nic equilibri		
	01,00	5510	-0 L		<i>~ j</i> 1101				equille		

SEMESTER I ELECTIVE COURSE I: ALLIED PHYSICS FOR MATHEMATICS – I e Image: Colspan="2">Image: Colspan="2" e Image: Colspan="2">Image: Colspan="2" Image: Colspa=

	TOTAL	60
V	Digital Electronics and Digital India logic gates, OR, AND, NOT, NAND, NOR, EXOR logic gates – universal building blocks – Boolean algebra – De Morgan's theorem – verification – overview of Government initiatives: software technological parks under MeitY, NIELIT- semiconductor laboratories under Dept. of Space – an introduction to Digital India	12
IV	 entropy – change of entropy in reversible and irreversible process. Electricity and Magnetism Potentiometer – principle – measurement of thermo emf using potentiometer –magnetic field due to a current carrying conductor – Biot-Savart's law – field along the axis of the coil carrying current – peak, average and RMS values of ac current and voltage – power factor and current values in an AC circuit – types of switches in household and factories– Smart wifi switches- fuses and circuit breakers in houses 	12
	laws of thermodynamics – heat engine – Carnot's cycle – efficiency – entropy – change of entropy in reversible and irreversible process.	

Self-Study	Application of ultrasonics; Streamline and turbulent motion; Reversible and
	irreversible process; Types of switches;
	Logic gates-Universal building blocks

Textbooks

- 1. Ubald Raj, A. and Jose Robin, G. 2012. Allied Physics. Indira Publications. Marthandam.
- 2. Murugesan, R. 2001. Allied Physics. S. Chand & Co. New Delhi.

Reference Books

- 1. Brijlal and Subramaniam, N. 1994. Properties of Matter. S. Chand & Co. New Delhi.
- 2. Murugesan, R. 2017. Electricity and Magnetism. S. Chand & Co. New Delhi.
- 3. Ubald Raj, A. and Jose Robin, G. 2004. Basic Electronics. Indira Publications. Marthandam.

Web Resources

- 1. https://youtu.be/M_5KYncYNyc
- 2. https://www.youtube.com/watch?v=9mXOMzUruMQ&t=1s
- 3. https://www.youtube.com/watch?v=m4u-SuaSu1s&t=3s
- 4. https://www.biolinscientific.com/blog/what-are-surfactants-and-how-do-they-work
- 5. https://learningtechnologyofficial.com/category/fluid-mechanics-lab/
- 6. http://hyperphysics.phy-astr.gsu.edu/hbase/permot2.html

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

						0010	-	-				
	PO1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PSO 1	PSO 2	PSO3	PSO4	PSO5
CO1	3	3	1	1	1	1	2	3	2	2	3	1
CO2	3	3	3	1	2	2	2	3	3	3	3	3
CO3	3	3	3	3	3	3	3	3	3	3	3	3
CO4	3	3	3	3	2	2	2	3	3	3	2	3
CO5	3	3	3	2	3	3	3	3	3	3	3	3
TOTAL	15	15	14	10	11	11	12	15	14	14	14	13
AVERAGE	3	3	2.8	2	2.2	2.2	2.4	3	2.8	2.8	2.8	2.6

SEMESTER I ELECTIVE LAB COURSE I: ALLIED PHYSICS PRACTICAL FOR MATHEMATICS – I

Course	т	т	р	C	Credita	Inst.	Total		Marks	
Code	L	1	r	3	Credits	Hours	Hours	CIA	External	Total
PU231EP1	-	-	2	-	2	2	30	25	75	100

Pre-requisite:

Knowledge in basic Physics

Learning Objectives:

- 1. To make the students more innovative, in hands on experiments.
- 2. To elucidate theory through simple experiments in physics.

-	2. To enderdate theory through simple experiments in physics.	
	Course Outcomes	
On t	he successful completion of the course, student will be able to:	
1	understand the basic principles of Physics through experiments.	K2
2	measure and determine the various physical parameters.	K3
3	develop an idea about the handling of various instruments.	K2
4	get an idea about basic Scientific knowledge and implications of its broad working principle	K2 & K3
5	analyze, interpreting and evaluate data.	K3 & K4
K1	- Remember; K2 - Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate; K	6 – Create

Minimum of Eight Experiments from the list:

- 1. Young's modulus by non-uniform bending using pin and microscope
- 2. Young's modulus by non-uniform bending using optic lever, scale and telescope
- 3. Rigidity modulus by torsional oscillations without mass
- 4. Determination of AC frequency using sonometer
- 5. Surface tension and interfacial Surface tension drop weight method
- 6. Comparison of viscosities of two liquids burette method
- 7. Determination of co-efficient of viscosity-Variable pressure head
- 8. Calibration of low range voltmeter using potentiometer

9. Determination of thermo emf using potentiometer

- 10. Verification of truth tables of basic logic gates using ICs
- 11. Verification of De Morgan's theorems using logic gate ICs.
- 12. Use of NAND as universal building block.
- 13. Rigidity modulus by static torsion method.
- 14. Verification of laws of transverse vibrations using sonometer

Note: Use of digital balance is permitted

Reference Books

- 1. Manual prepared by the department
- 2. Ubald Raj, A. and Jose Robin, G. 2012. Allied Physics. Indira Publications. Marthandam.

SEMESTER I

Course Code	т	т	р	G	Credits	Inst.	Total		Marks			
Course Code	L	1	P	Э	Creans	Hours	Hours	CIA	External	Total		
PU231NM1	2	-	-	-	2	2	30	25	75	100		

NON-MAJOR ELECTIVE NME I: PHYSICS FOR EVERYDAY LIFE

Pre-requisite:

Students should know about basic knowledge regarding mechanical objects, laser, optical devices and solar energy.

Learning Objectives:

- 1. To introduce fundamental physics concepts and their applications in everyday life.
- 2. To comprehend where all physics principles have been applied in everyday life and to appreciate the concepts with a greater understanding, as well as to learn about Indian scientists who have made significant contributions to Physics.

Course Outcomes

On the	On the successful completion of the course, student will be able to:							
1.	. understand the knowledge of basic scientific principles and fundamental							
	concepts in motion of bodies.							
2.	understand the basic laws of physics in domestic appliances	K2						
3.	recall the physics notions applied in various optical instruments	K1						
4.	comprehend the utilization of solar energy in everyday life activities	K2						
5.	know about the various physicists contribution towards science and	K2						
	technology							

K1 - Remember; K2 - Understand; K3 - Apply

Units	Contents							
		Hours						
Ι	MECHANICAL OBJECTS Spring scales – bouncing balls –roller coasters – bicycles –rockets and space travel.	6						
II	OPTICAL INSTRUMENTS AND LASER Vision corrective lenses – polaroid glasses – UV protective glass – polaroid camera – colour photography – holography and laser.	6						
III	PHYSICS OF HOME APPLIANCES Bulb – fan – hair drier – television – air conditioners – microwave ovens – vacuum cleaners	6						
IV	SOLAR ENERGY Solar constant – General applications of solar energy – Solar water heaters – Solar Photo – voltaic cells – General applications of solar cells.	6						
v	INDIAN PHYSICIST AND THEIR CONTRIBUTIONS C.V.Raman, Homi Jehangir Bhabha, Vikram Sarabhai, Subrahmanyan Chandrasekhar, Venkatraman Ramakrishnan, Dr. APJ Abdul Kalam and their contribution to science and technology.	6						
) í	TOTAL	30						

Self -Study Brief description about bulb, fan, Applications of solar energy

Textbooks

- 1. The Physics in our Daily Lives, Umme Ammara, Gugucool Publishing, Hyderabad, 2019.
- 2. For the love of physics, Walter Lawin, Free Press, New York, 2011.

Reference Books

1. Gerardin Jayam. (2019). Physics in Everyday Life. Published by the Department of Physics, Holy Cross College (Autonomous), Nagercoil.

Web Resources

- 1. https://www.scientificworldinfo.com/2021/09/importance-of-physics-in-our-daily-life.html
- 2. https://www.britannica.com/technology/laser

MAPPING WITH PROGRAMME OUTCOMESAND PROGRAMME SPECIFIC OUTCOMES

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	2	1	1	2	2	3	2	2	2	2
CO2	3	3	2	1	1	2	2	3	3	3	2	2
CO3	3	2	2	1	2	2	2	3	3	3	3	3
CO4	3	3	3	1	1	3	3	3	3	2	2	2
CO5	2	1	1	3	2	2	2	2	2	2	2	2
TOTAL	14	12	10	7	7	11	11	14	13	12	11	11
AVERAGE	2.8	2.4	2	1.4	1.4	2.2	2.2	2.8	2.6	2.4	2.2	2.2

SEMESTER I FOUNDATION COURSE: INTRODUCTORY PHYSICS

Course Code	т	Т	Р	G	Credits	Inst. Hours	Total			
Course Code	L	1	r	3	Creans	Inst. Hours	Hours	CIA	External	Total
PU231FC1	2	-	-	-	2	2	30	25	75	100

Pre-requisite:

2.

Students should know the fundamentals of Physics.

Learning Objectives:

- 1. To help students get an overview of Physics before learning their core courses.
 - To serve as a bridge between the school curriculum and the degree programme.

	Course Outcomes					
On the successful completion of the course, student will be able to:						
1.	apply concept of vectors to understand concepts of Physics and solve problems	K2 & K3				
2.	interpret different forces present in Nature while learning about phenomena related to these different forces.	K1 & K2				
3.	describe energy in different process and relate momentum, velocity and energy	K1 & K2				
4.	differentiate different types of motions they would encounter in various courses and understand their basis	K1 & K2				
5.	relate various properties of matter with their behavior and connect them with different physical parameters involved.	K2 & K3				
	V1 Demember V2 Understand V2 Apply					

K1 - Remember; K2 - Understand; K3 - Apply

Units	Contents	No. of Hours
I	Vector: Vectors, scalars, Examples for scalars and vectors from physical quantities, addition, subtraction of vectors, resolution and resultant of vectors, units and dimensions, standard physics constants	6
п	Force: Different types of forces, gravitational, electrostatic, magnetic, electromagnetic, nuclear, mechanical forces like, centripetal, centrifugal, friction, tension, cohesive, adhesive forces	6
ш	Energy: Different forms of energy, Conservation laws of momentum, energy, types of collisions, angular momentum, alternate energy sources, real life examples	6
IV	Motion: Types of motion, linear, projectile, circular, angular, simple harmonic motions, satellite motion, banking of a curved road, stream line and turbulent motions, wave motion, comparison of light and sound waves, Free, forced and damped oscillations	6
v	Surface tension and Viscosity: Surface tension, shape of liquid drop – angle of contact – viscosity – lubricants, capillary flow, diffusion, real life examples, properties and types of materials in daily use, conductors, insulators, thermal and electric	6
	TOTAL	30

Self-study	Units and dimensions; Friction; Comparison of light and sound waves;
	Stream line and turbulent motions; Conductors

Textbooks

- 1. Mathur D.S. 2010, Elements of Properties of Matter, S.Chand & Co
- 2. BrijLal& N. Subrahmanyam. 2003, Properties of Matter, S.Chand & Co.

Reference Books

1.Gulati H.R, 1977, Fundamental of General Properties of Matter (Fifth edition), S.Chand& Co.

Web Resources

- 1. https://www.physicsclassroom.com/class/newtlaws/Lesson-2/Types-of-Forces
- 2. http://hyperphysics.phyastr.gsu.edu/hbase/permot2.htmlhttps://science.nasa.gov/ems/
- 3. https://eesc.columbia.edu/courses/ees/climate/lectures/radiation_hays/
- 4. https://testbook.com/physics/types-of-motion
- 5. https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Tex tbook

_Maps/Supplemental_Modules_(Physical_and_Theoretical_Chemistry)/Physical_ Propert ies_of_Matter/States_of_Matter/Properties_of_Liquids/Surface_Tension

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4	PSO4
CO1	3	3	3	3	2	3	3	2.5	2.5	3	3	3
CO2	3	3	3	3	3	2	2	2.5	2.5	2	3	3
CO3	3	3	3	3	3	2	2	2.5	2.5	2	3	3
CO4	3	3	3	3	2	2	2	2.5	2.5	2	3	3
CO5	3	3	3	3	3	2	2	2.5	2.5	2	3	3
TOTAL	15	15	15	15	13	11	11	12.5	12.5	11	15	15
AVERAGE	3	3	3	3	2.6	2.2	2.2	2.5	2.5	2.2	3	3

SEMESTER I SPECIFIC VALUE-ADDED COURSE: PHOTOSHOP

Course Code	т	т	р	c	Credita	Inst Hound	Total	Marks		
Course Code	L	I	r	ð	Creans	Inst. nours	Hours	CIA	External	Total
PU231V01	2	-	-	-	1	2	30	25	75	100

Pre-requisite:

Basic knowledge on photoshop.

Learning Objectives:

- 1. Students will be able to create images for web design, logos, graphics, layouts, image touch-ups, and colour enhancement.
- 2.Students will be able to learn the principles of how different types of media can be processed and presented by computers.

Course Outcomes

On the	On the successful completion of the course, student will be able to:							
1	use photoshop confidently and effectively.	K3						
2	gain the skills and abilities to use photoshop that make them employable	K6						
3	create and edit images	K6						
4	use a range of tools and filters in <i>photoshop</i>	K3						
	K3–Apply; K6-Create							

Units	Contents	No. of Hours
Ι	PHOTOSHOP Introduction - Features of Photoshop - Key Board practice – Creation of new file - saving document - Inserting of Images	6
П	GRAPHICS Creating Graphics: Combining Photos, Text, & Graphics - Replacing Backgrounds - Colour Correction Using Colour Balance - Colour Correction Using Curves - Preparing Digital Photos for Print - Exporting Files	6
III	SMART FILTERS Sharpening Photos - Layer Masking - Masking Smart Filters - Converting to Black & White - Adjustment Layers & Mask – Retouching	6
IV	MASKS Changing Colour with a Blending Mode - Clipping Masks: Filling Shapes with Images - Using Adjustment Layers as Clipping Masks - Camera Raw Fundamentals	6
v	PHOTOSHOP FOR DESIGN Camera Raw Fundamentals - Photoshop for Design: Adding a Title & Layer Styles - Photoshop for Design: Creating Digital Art in Photoshop - Photoshop for Design: Compositing into a Photo	6
	TOTAL	30

Reference Books

1. Rafael Concepcion, Adobe Photoshop and Lightroom Classic Classroom in a Book 3rd Edition, Kindle Edition, Adobe Press, 2022

2. Tay Vaughan, "Multimedia making it work", Tata McGraw-Hill, 2021.

3. Li & Drew, "Fundamentals of Multimedia", Pearson Education, 2019.

4. Robin Nichols, "Mastering Adobe Photoshop Elements 2023", Fifth Edition, Packet Publisher, Dec 2022.

AND FROGRAMMIE SPECIFIC OUTCOMES												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	1	2	3	3	3	3	3	1	2
CO2	3	3	3	2	3	3	3	3	3	3	2	3
CO3	3	2	3	3	1	3	3	3	2	3	3	1
CO4	3	3	3	2	2	3	3	3	3	3	2	2
CO5	3	2	3	3	2	3	3	3	2	3	3	3
TOTAL	15	13	15	11	10	15	15	15	13	15	13	11
AVERAGE	3	2.6	3	2.2	2	3	3	3	2.6	3	2.6	2.2

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

SEMESTER I

SPECIFIC VALUE-ADDED COURSE: BASICS OF ENERGY SOURCES

Course Code	т	т	р	S	Credita	Inst Hound	Total	Marks			
	L	I	r		Creans	Inst. Hours	Hours	CIA	External	Total	
PU231V02	2	•	•	I	1	2	30	25	75	100	

Pre-requisite:

Basic knowledge of non-conventional energy sources.

Learning Objectives:

Total

- 1. To get the understanding of the conventional and non-conventional energy sources
- 2. To apply knowledge of conservation and storage systems to design and implement energy-based appliances.

	Course Outcomes								
Upon coi	npletion of this course, students will be able to:)							
1	identify various forms of renewable and non-renewable energy sources.								
2.	understand the fundamentals of wind energy conversion.								
3.	3. apply the principle of a wind mill in producing energy.								
4.	4. correlate solar-based appliances for enhanced functionality.								
5. defend the energy storage capacities of batteries.									
K1- Ren	nember; K2- Understand; K3 – Apply; K4- Analyze; K5-	Evaluate							

Units	Contents	No. of Hours
I	BASICS OF ENERGY SOURCES Conventional and non-conventional energy sources and their availability–Energy from other sources–chemical energy– Energy storage and distribution.	6
II	WIND ENERGY SOURCES Fundamentals of wind energy conversion–power in the wind– Advantages and disadvantages of wind energy conversion systems (WECS) - Energy storage	6
III	SOLAR ENERGY SOURCES Solar radiation and its measurements-solar cells- Solar cells for direct conversion of solar energy to electric powers-solar cell parameter-solar cell electrical characteristics	6
IV	SOLAR APPLIANCES Efficiency–solar radiation geometry - solar water Heater –solar distillation– solar cooking–solar greenhouse - types of greenhouses – Solar pond and its applications	6
v	ENERGY STORAGE Importance of energy storage- batteries - fuel cells – types of fuel cells – advantages and disadvantages of fuel cells – applications of fuel cells -	6

Self-study	Batteries, Fuel Cells

30

hydrogen storage.

Textbooks

- 1. Rai G D, 1996. Non conventional sources, (4th Edition), Khanna publishers, New Delhi.
- 2. Agarwal M P,1983Solar Energy, S. Chand and Co., New Delhi.
- 3. Sukhatme S P, 1997. *Solar energy, principles of thermal collection and storage*, (2nd Edition), Tata McGraw-Hill Publishing Co. Lt., New Delhi .
- 4. Hordeski G M, 1985. *Design of solar appliances.*, Englewood Cliffs, New Jersey: Reston.
- 5. Horne D F, 1988. *Measuring Systems for energy Applications*, Philadelphia, IOP Publishing ,Pennsylvania.

Reference Books

- 1. Mehta V K, Rohit Mehta, 2016. *Principles of Electronics*, S.Chand and Company, New Delhi.
- 2. Vijayendran V, Viswanathan S, 2011. *Introduction to Solar energy*. (1st Edition) (printers and Publishers) Pvt. Ltd., Chennai.
- 3. Thomas L. Floyd, 1999. *Energy Fundamentals*.(3rd ed.).,UBS- Publishers Distributers LTD, New Delhi.
- 4. Millman J. Halkias, C C, 1991. *Integrated Energy sources*. Tata McGraw-Hill Publishing Company Limited, New Delhi.
- 5. Ryder, J D, 2004. *Energy storage: Fundamentals and Applications*. Prentice Hall International, INC., Englewood Cliffs., United States.

Web Resources

- 1. https://www.open.edu/openlearn/ocw/mod/oucontent/view.php?id=2411&printable=1
- 2. https://www.nationalgeographic.org/encyclopedia/tidal-energy/
- 3. https://www.ge.com/renewableenergy/wind-energy/what-is-wind-energy
- 4. https://www.reenergyholdings.com/renewable-energy/what-is-biomass/
- 5. https://www.acciona.com/renewable-energy/solar-energy/

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	1	2	3	3	3	3	3	1	2
CO2	3	3	3	2	3	3	3	3	3	3	2	3
CO3	3	2	3	3	1	3	3	3	2	3	3	1
CO4	3	3	3	2	2	3	3	3	3	3	2	2
CO5	3	2	3	3	2	3	3	3	2	3	3	3
TOTAL	15	13	15	11	10	15	15	15	13	15	13	11
AVERAGE	3	2.6	3	2.2	2	3	3	3	2.6	3	2.6	2.2

SEMESTER I

SPECIFIC VALUE-ADDED COURSE: PHYSICS OF HOME APPLIANCES

Course Code	т	т	Р	S	Credita	Inst Hound	Total	Marks			
	L	I			Creans	Inst. nours	Hours	CIA	External	Total	
PU231V03	2	•	•	I	1	2	30	25	75	100	

Pre-requisite:

Basic knowledge of home appliances.

Learning Objectives:

1.To get the understanding of the physics of home appliances.

2.To apply physics principles in daily life and appreciate the concepts with a better understanding.

	Course Outcomes										
	Upon completion of this course, students will be able to:										
1	1 illustrate the basic laws of physics in domestic appliances										
2	2 interpret the basic functionality of water purifier.										
2	articulate the fundamental physics concepts and their applications in										
3	3 relate physics principles used in everyday life home appliances.										
4	appraise safety and security procedures.	K5									
X1- Re	member; K2- Understand; K3 – Apply; K4- Analyze; K5-	Evalua									

Units	Contents	No. of Hours
I	INTRODUCTION TO ELECTRICITY Electric Charge- Voltage- Electric Current- Ohm's Law- Electric Potential- Cell- Serial and Parallel Circuit- their effect on Voltage and Current Transformer	6
II	MAINTENANCE OF WASHING MACHINE Testing and identification of the faulty block - rectifying common faults by replacing the damage components - Testing of the damage block after repair	6
III	BASIC FUNCTIONALITY OF WATER PURIFIER Working principle - functionality of different types of water Purifiers- part identification and their working- steps to install the water purifier- Water Filter Maintenance	6
IV	BASICS OF DOMESTIC APPLIANCES Electric Bulbs– types of fans and their working – hair drier – television – air conditioners – microwave ovens – vacuum cleaners and their working	6
V	SAFETY AND SECURITY PROCEDURES Reporting incidents- system failures- power failures -protection Equipment-Fuse- First aid requirement in case of electrical shocks and other injuries	6
	Total	30

Self-study Electric bulbs, Fans

Textbooks

1. Murugesan R, 2017. Electricity and Magnetism, S. Chand& Co., New Delhi.

- 2. Murugesan R, 1998. Modern Physics, S. Chand& Co., New Delhi.
- 3. Theraja B L, 2003. Basic Electronics, S. Chand& Co., New Delhi.
- 3. Subirkumar Sarkar, 2008. *Home appliances systems*. S. Chand & Company Ltd., New Delhi.
- 4. Palanisamy P K, 2002. Semiconductor physics, SCITECH Publication, Chennai.

Reference Books

- 1. Murugesan R, Kiruthiga Sivaprasath, 2016. *Modern Physics*, S. Chand & Company Ltd., New Delhi.
- 2. Ubald Raj A, Jose Robin G, 2006. *Mechanics*, Indira Publications, Marthandam.
- 3. Murugeshan R ,2016. *Circuits and its working*, S. Chand & Company Ltd., New Delhi.
- 4. Wilson, Hawker, 2004. *Electronics*, Prentice Hall of India, New Delhi.
- 5. Battacharya P, 2002. Semiconductor devices. PHI, New Delhi.

Web Resources

- 1. https://www.open.edu/openlearn/ocw/mod/oucontent/view.php?id=2411&printable=1
- 2. https://www.nationalgeographic.org/encyclopedia/hair drier /
- 3. https://www.ge.com/renewableenergy/wind-energy/what-is-vacuum cleaner/
- 4. https://www.reenergyholdings.com/renewable-energy/what-is-airconditioner/
- 5. https://www.acciona.com/renewable-energy/microwave oven/

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	1	2	3	3	3	3	3	1	2
CO2	3	3	3	2	3	3	3	3	3	3	2	3
CO3	3	2	3	3	1	3	3	3	2	3	3	1
CO4	3	3	3	2	2	3	3	3	3	3	2	2
CO5	3	2	3	3	2	3	3	3	2	3	3	3
TOTAL	15	13	15	11	10	15	15	15	13	15	13	11
AVERAGE	3	2.6	3	2.2	2	3	3	3	2.6	3	2.6	2.2

SEMESTER II

CORE COURSE II: HEAT, THERMODYNAMICS AND STATISTICAL PHYSICS

Course Code	L	Т	Р	S	Credits	Inst.	Total	Marks		
						Hours	Hours	CIA	External	Total
PU232CC1	5	-	-	-	5	5	75	25	75	100

Pre-requisite:

Knowledge on Temperature in different Scales and Laws of thermodynamics

Learning Objectives:

- 1. To understand a basic in conversion of temperature in Celsius, Kelvin and Fahrenheit scales.
- 2. To Relate the laws of thermodynamics, entropy in everyday life and explore the knowledge of statistical mechanics and its relation

Course Outcomes

On the s	successful completion of the course, student will be able to:	
1.	acquires knowledge on how to distinguish between temperature and heat, and explain practical measurements of high temperature as well as low temperature physics.	K1 & K2
2.	derive the efficiency of Carnot's engine and discuss the implications of the laws of Thermodynamics in diesel and petrol engines	K1 & K3
3.	analyze performance of thermodynamic systems viz efficiency by problems and gets an insight into thermodynamic properties like enthalpy, entropy	K2 & K3
4.	study the process of thermal conductivity and apply it to good and bad conductors.	K2 & K3
5.	interpret classical statistics concepts such as phase space, ensemble, Maxwell-Boltzmann distribution law, Bose-Einstein and Fermi-Dirac.	K2 & K3

K1 - Remember; K2 - Understand; K3 - Apply

	Contents	No. of					
Units		Hours					
Ι	CALORIMETRY: Specific heat capacity – specific heat capacity of gases	15					
	$C_P\& C_V-$ Meyer's relation – Joly's method for determination of C_V –						
	Regnault's method for determination of CP						
	LOW TEMPERATURE PHYSICS: Joule-Kelvin effect – porous plug						
	experiment - Joule-Thomson effect -Boyle temperature - temperature of						
	inversion – liquefaction of gas by Linde's Process – adiabatic demagnetisation.						
II	THERMODYNAMICS-I: Zeroth law and first law of thermodynamics – P-V	15					
	diagram - heat engine -efficiency of heat engine - Carnot's engine,						
	construction, working and efficiency of petrol engine and diesel engines -						
	comparison of engines.						
III	THERMODYNAMICS-II: Second law of thermodynamics-entropy of an	15					
	ideal gas – entropy change in reversible and irreversible processes – T-S						
	diagram -thermodynamical scale of temperature - Maxwell's thermodynamical						
	relations – Clasius-Clapeyron's equation (first latent heat equation) – third law						
	of thermodynamics – unattainability of absolute zero – heat death.						
IV	HEAT TRANSFER: Modes of heat transfer: conduction, convection and	15					
	radiation. Conduction: thermal conductivity - determination of thermal						
	conductivity of a good conductor by Forbe's method – determination of thermal						
	conductivity of a bad conductor by Lee's disc method.						
	Radiation: black body radiation (Ferry's method) - distribution of energy in						
	black body radiation - Wien's law and Rayleigh Jean's law -Planck's law of						

	radiation – Stefan's law – deduction of Newton's law of cooling from Stefan's law.	
V	STATISTICAL MECHANICS: Definition of phase-space – micro and macro states – ensembles –different types of ensembles – classical and quantum Statistics – Maxwell Boltzmann statistics – expression for distribution function – Bose-Einstein statistics – expression for distribution function – Fermi-Dirac statistics – expression for distribution function – comparison of three statistics.	
	TOTAL	75

Self-study Temperature of inversion ; Comparison of engines; Entropy of an ideal gas; Stefan's law; Comparison of three statistics.

Textbooks

- 1. Brijlal , Subramaniam, N. Henne, P. S. 2008. Heat Thermodynamics and Statistical Physics, Revised Edition, S.Chand & Co., New Delhi.
- 2. Murugeshan, R. Kiruthiga Sivaprasath. 2013, Thermal Physics, 2nd edn., Sulthan Chand & Sons, New Delhi.
- 3. Jauaraman, D. Ilangovan. K. 2009, Thermal Physics and Statistical Mechanics, 1st edn., S. Viswanathan Publishers and Printers, Chennai.

Reference Books

- 1. Ubald Raj A. and Jose Robin G. 2001, Thermal Physics and Statistical Mechanics. 1st edn. Indira publication. Marthandam, Tamil Nadu.
- 2. Mathur, D.S. 2014. Heat and Thermodynamics, 5th Edition, Sultan Chand & Sons, New Delhi.
- 3. Gupta, Kumar, Sharma, 2013. Statistical Mechanics (Twenty-Sixth Edition), S. Chand & Co. Ltd., New Delhi.
- 4. Sears, Zemansky, Hugh D. Young, Roger, Freedman, A. 2021. University Physics with Modern Physics (Fifteenth Edition), Pearson, New Jersey.
- 5. Ubald Raj A. and Jose Robin G. 2005, Mechanics and Thermal Physics. 1st edn. Indira publication. Marthandam, Tamil Nadu.

Web Resources

- 1. https://www.youtube.com/watch?v=M_5KYncYNyc
- 2. https://www.youtube.com/watch?v=pQWwP7YYH60
- 3. https://www.youtube.com/watch?v=LUoUb4hGMH8
- 4. https://ocw.mit.edu/courses/5-60-thermodynamics-kinetics-spring-2008/resources/lecture-2-work-heat-first-law/
- 5. https://ocw.mit.edu/courses/5-60-thermodynamics-kinetics-spring-2008/resources/lecture-13-gibbs-free-energy/

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3	3	3	3	2	2	1	1
CO2	2	3	3	3	2	3	3	3	2	2	1	1
CO3	3	3	3	2	3	3	3	3	2	2	2	1
CO4	3	3	3	3	3	3	3	3	2	2	1	2
CO5	3	3	2	3	3	3	2	3	2	2	1	1
TOTAL	14	15	14	14	14	15	14	15	10	10	6	6
AVERAGE	2.8	3	2.8	2.8	2.8	3	2.8	3	2	2	1.6	1.6

3 – Strong, 2- Medium, 1- Low

SEMESTER II CORE LAB COURSE II: GENERAL PHYSICS LAB II

Course Code	L	Τ	Р	S	Credits	Inst.	Total		Marks	
						Hours	Hours	CIA	External	Total
PU232CP1	-	-	3	-	3	3	45	25	75	100

Prerequisites: Types of Modulus, Knowledge on thermal conductivity and specific heat capacity

Learning Objectives:

- 1. To apply their knowledge gained about the concept of heat and sound waves, resonance.
- 2. To do error analysis and correlate results

Course Outcomes

On th	ne successful completion of the course, students will able to:	
1.	understand the strength of materials using physical experiments.	K2
2.	acquire knowledge of thermal behaviour of the materials.	K1
3.	analyze the physical principle involved in the various instruments such as sonometer and Melde's String.	K4
4.	understand the scientific method and an ability to apply the scientific method in practice.	K2
	K1 Domombor: K2 Understand: K3 Apply: K4 Applyzo	

K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze

Contents

(Any Eight Experiments)

- 1. Verification of Newton's law of cooling
- 2. Determination of specific heat by cooling graphical method.
- 3. Determination of thermal conductivity of bad conductor by Lee's disc method.
- 4. Frequency of AC by using Sonometer.
- 5. To verify the laws of transverse vibration using sonometer.
- 6. Velocity of sound through a wire using Sonometer.
- 7. To verify the laws of transverse vibration using Melde's apparatus.
- 8. Determination of g using compound pendulum.
- 9. Determination of thermal conductivity of good conductor by Searle's method.
- 10. Determination of thermal conductivity of bad conductor by Charlaton's method.
- 11. Determination of specific heat capacity of solid.
- 12. Determination of specific heat of liquid by Joule's electrical heating method (applying radiation correction by Barton's correction/graphical method),
- 13. Determination of Latent heat of a vaporization of a liquid.
- 14. Verification of Stefan's-Boltzmans law.
- 15. Determination of thermal conductivity of rubber tube.
- 16. Helmholtz resonator.
- 17. Determination of velocity of sound using Kunds tube.
- 18. Determination of frequency of an electrically maintained tuning fork
- 19. To compare the mass per unit length of two strings using Melde's apparatus.
- 20. Determination of moment of inertia and g using Bifilar pendulum.

Reference Books

- 1. Manual prepared by the department
- 2. Ouseph, C, C., Rao, U, J. and Vijayendran, V. 2007. Practical Physics and Electronics. S. Viswanathan, Pvt., Ltd. Chennai.

	AND I ROORANNE SI ECHIIC OUICOMES											
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	2	3	3	3	3	3	3	3	3	2
CO2	2	3	2	3	2	3	3	3	2	2	3	2
CO3	3	3	2	2	3	3	3	3	2	2	2	2
CO4	3	3	2	3	3	3	3	3	2	2	2	2
TOTAL	11	12	8	11	11	12	12	12	9	9	10	8
AVERAGE	2.75	3	2	2.75	2.75	3	3	3	2.25	2.25	2.5	2
				• ~ ·	-		-					

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

SEMESTER II ELECTIVE COURSE II: ALLIED PHYSICS FOR MATHEMATICS – II

Course	т	т	р	G	Credita	Inst.	Total		Marks	
Code	L	1	r	Э	Credits	Hours	Hours	CIA	External	Total
PU232EC1	4	-	-	-	3	4	60	25	75	100

Prerequisites: Knowledge on basic Physics

Learning Objectives:

- 1. To impart basic principles of Physics
- 2. To incorporate concepts of Physics in day to day life

Course Outcomes

On	the successful completion of the course, student will be able to:	
1	explain the concepts of interference, diffraction and rephrase the concept of polarization	K1 & K2
2	outline the basic foundation of different atom models and relate the importance of theoretical models	K1 & K2
3	understand the properties of nuclei, nuclear forces, structure of atomic nucleus and nuclear models and interpret nuclear processes like fission and fusion.	K2& K3
4	describe the basic concepts of relativity like equivalence principle, inertial frames and Lorentz transformation.	K3 & K4
5	summarize the working of semiconductor devices like diodes, transistors, USB chargers and EV charging stations.	K4& K5

K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate

Contents	No. of
	Hours
OPTICS	12
Interference – interference in thin films –colours of thin films – air wedge –	
determination of diameter of a thin wire by air wedge – diffraction –	
diffraction of light vs sound – normal incidence – experimental determination	
of wavelength using diffraction grating (no theory) – polarization –	
polarization by double reflection - Brewster's law - optical activity -	
application in sugar industries	
ATOMIC PHYSICS	12
Atom models – Bohr atom model – mass number – atomic number – nucleons	
– vector atom model – various quantum numbers – Pauli's exclusion principle	
– electronic configuration – periodic classification of elements – Bohr	
magneton - Stark effect -Zeeman effect (elementary ideas only) - photo	
electric effect – Einstein's photoelectric equation – applications of	
photoelectric effect: solar cells, solar panels, optoelectric devices	
NUCLEAR PHYSICS	12
Nuclear models – liquid drop model – magic numbers – shell model – nuclear	
energy – mass defect – binding energy – radioactivity – uses – half life – mean	
life - radio isotopes and uses -controlled and uncontrolled chain reaction -	
nuclear fission – energy released in fission – chain reaction – critical reaction	
- critical size- atom bomb - nuclear reactor - breeder reactor - importance of	
commissioning PFBR in our country - heavy water disposal, safety of	
reactors: seismic and floodsintroduction to DAE, IAEA nuclear fusion	
thermonuclear reactions – differences between fission and fusion.	
	OPTICS Interference – interference in thin films –colours of thin films – air wedge – determination of diameter of a thin wire by air wedge – diffraction – diffraction of light vs sound – normal incidence – experimental determination of wavelength using diffraction grating (no theory) – polarization – polarization by double reflection – Brewster's law – optical activity – application in sugar industries ATOMIC PHYSICS Atom models – Bohr atom model – mass number – atomic number – nucleons – vector atom model – various quantum numbers – Pauli's exclusion principle – electronic configuration – periodic classification of elements – Bohr magneton – Stark effect –Zeeman effect (elementary ideas only) – photo electric effect – Einstein's photoelectric equation – applications of photoelectric effect: solar cells, solar panels, optoelectric devices NUCLEAR PHYSICS Nuclear models – liquid drop model – magic numbers – shell model – nuclear energy – mass defect – binding energy – radioactivity – uses – half life – mean life - radio isotopes and uses –controlled and uncontrolled chain reaction – nuclear fission – energy released in fission – chain reaction – critical reaction – critical size- atom bomb – nuclear reactor – breeder reactor – importance of commissioning PFBR in our country – heavy water disposal, safety of reactors: seismic and floods –introduction to DAE, IAEA – nuclear fusion –

IV	INTRODUCTION TO RELATIVITY AND GRAVITATIONAL WAVES Frame of reference – postulates of special theory of relativity – Galilean transformation equations – Lorentz transformation equations – derivation – length contraction – time dilation – twin paradox – mass-energy equivalence – introduction on gravitational waves, LIGO, ICTS opportunities at	12							
V	International Centre for Theoretical Sciences SEMICONDUCTOR PHYSICS								
v	p-n junction diode – forward and reverse biasing – characteristic of diode – zener diode – characteristic of zener diode – voltage regulator – full wave bridge rectifier – construction and working – advantages (no mathematical treatment) – USB cell phone charger –introduction to e-vehicles and EV charging stations								
	TOTAL	60							

Self-study Application in sugar industries; Zeeman effect; nuclear fusion; ICTS opportunities at International Centre for Theoretical Sciences; USB cell phone charger

Textbooks

- 1. Murugesan R. (2001), Allied Physics, S. Chand & Co, New Delhi.
- 2. Ubald Raj, A. and Jose Robin, G. 2012. Allied Physics. Indira Publications. Marthandam.

Reference Books

- 1. Resnick Halliday and Walker (2018), Fundamentals of Physics, 11th Edn., John Willey and Sons, Asia Pvt .Ltd., Singapore.
- 2. Thangaraj K.and Jayaraman D. (2004), Allied Physics, Popular Book Depot, Chennai.
- 3. Beiser A. (2003), Concepts of Modern Physics, Tata McGraw Hill Publication, New Delhi.
- 4. Murugesan R. (2005), Modern Physics, S.Chand&Co, New Delhi.
- 5. Subramaniyam A. (2001), Applied Electronics, 2nd Edn., National Publishing Co., Chennai.

Web Resources

- 1. https://www.berkshire.com/learning-center/delta-p-facemask/
- 2. https://www.youtube.com/watch?v=QrhxU47gtj4
- 3. https://www.validyne.com/blog/leak-test-using-pressure-transducers/
- 4. https://www.atoptics.co.uk/atoptics/blsky.htm -
- 5. https://www.metoffice.gov.uk/weather/learn-about/weather/optical-effects
- https://www.berkshire.com/learning-center/deltapfacemask/https://www.youtube.com/watch?v=QrhxU47gtj4
- 7. https://www.youtube.com/watch?time_continue=318&v=D38BjgUdL5U&feature=emb_log

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

						Louite	0010				
		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3
	CO1	3	3	2	2	3	2	2	2	2	2
	CO2	2	3	3	2	3	2	3	2	3	2
	CO3	2	2	2	2	2	3	3	3	2	2
)	CO4	3	3	2	2	3	2	2	2	2	2
	CO5	2	3	2	3	2	2	3	2	2	2
	TOTAL	12	14	11	11	13	11	13	11	11	10
	AVERAGE	2.4	2.8	2.2	2.2	2.6	2.2	2.6	2.2	2.2	2.0

3 – Strong, 2- Medium, 1- Low

SEMESTER II ELECTIVE LAB COURSE II: ALLIED PHYSICS PRACTICAL FOR MATHEMATICS II

						-				
Course	L	Т	Р	S	Credits	Inst.	Total	Marks		
Code						Hours	Hours			
PU232EP1	-	-	2	-	2	2	30	CIA	External	Total
								25	75	100

Prerequisites:

Basic Knowledge in physics experiments

Learning Objectives:

- 1. To apply various Physics concepts to understand concepts of Light, electricity and magnetism and waves, set up experimentation to verify theories, quantify and analyze,
- 2. To able to do error analysis and correlate results

Course Outcomes

On the successful completion of the course, student will be able to:											
1	understand the nature of monochromatic light and its diffraction and	K2									
	interference phenomenon										
2	design simple logic circuits	K3									
3	analyze the physical principle involved in the various instruments	K4									
4	understand the scientific method and an ability to apply the scientific method										
	in practice.										

K2 – Understand; K3 - Apply; K4 - Analyze

Contents

(Any Eight Experiments)

- 1. Radius of curvature of lens by forming Newton's rings
- 2. Thickness of a wire using air wedge
- 3. Wavelength of mercury lines using spectrometer and grating
- 4. Refractive index of material of the lens by minimum deviation
- 5. Refractive index of liquid using liquid prism
- 6. Thermal conductivity of poor conductor using Lee's disc
- 7. Determination of Earth's magnetic field using field along the axis of a coil
- 8. Determination of AC frequency using sonometer
- 9. Characterization of Zener diode
- 10. Construction of Zerner/IC regulated power supply
- 11. Construction of AND, OR, NOT gates using diodes and transistor
- 12. NOR gate as a universal building block

Reference Books

1. Ubald Raj, A. and Jose Robin, G. 2012. Allied Physics. Indira Publications. Marthandam.

	PROGRAMME SPECIFIC OUTCOMES													
		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4		
/	CO1	2	3	2	2	3	2	2	2	2	2	3		
	CO2	2	3	3	2	3	2	3	2	3	2	3		
	CO3	2	2	2	2	2	3	2	3	2	2	3		
	CO4	3	3	2	2	3	2	3	2	2	3	3		
	TOTAL	9	11	9	8	11	9	10	9	9	9	12		
	AVERAGE	2.25	2.75	2.25	2.0	2.75	2.25	2.5	2.25	2.25	2.25	3.0		

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

SEMESTER II NON-MAJOR ELECTIVE NME II: PHYSICS OF MUSIC

Course Code	т	т	п	S	Cuadita	In at II anna	Total	Marks			
Course Code	L	I	ľ		Creans	Inst. Hours	Hours	CIA	External	Total	
PU232NM1	2	-	-	-	2	2	30	25	75	100	

Pre-requisite:

Students should know about the basic knowledge regarding sound, vibrating systems and musical instruments.

Learning Objectives:

- 1. To educate and instruct students on the significance of physics in music.
- 2. To gain understanding of musical notes and instruments.

Course Outcomes

On the	successful completion of the course, student will be able to:								
1.	1. understand the principles and basic scientific concepts in sound waves								
2.	understand the various phenomena of simple vibrating systems.	K 1							
3.	comprehend the various musical notes and its production	K2							
4.	apply the knowledge of recording music in day to day life activities.	K3							
5.	know the scientific concepts of music	K2							

K1 - Remember; **K2** - Understand; **K3** - Apply

Units	Contents	No. of Hours
I	SCIENTIFIC STUDY OF MUSIC: vibrations of atoms of matter– vibrations coupling to air – propagation of sound waves in air, other media, fluids & solids – velocity, frequency, wavelength, time period, intensity: definition and unit fs – classification of sound on frequency and velocity– human & animal sound perception– mechanism of ear and hearing – psychoacoustics	6
п	SIMPLE VIBRATING SYSTEMS: Simple harmonic motion – tuning fork– amplitude, phase, energy, energy loss/damping/ dissipation – power – travelling waves and standing waves– laws of vibration in stretched strings– one-dimensional medium – open and closed organ pipes – over tones, harmonics – quality of sound: pitch, timber, loudness – octaves, musical notes	6
ш	MUSICAL TONE: pure/simple tones – sine/cosine waves– well-defined frequencies, wavelengths, amplitudes & phases– partial tones – assembly of pure tones– mix of different frequencies & amplitudes– complex tone – superposition of simple tones – complex waveform– periodic complex waveform – formants – resonances– sound envelope	6
IV	PRODUCTION OF MUSICAL SOUNDS: human voice, mechanism of vocal sound production – larynx (sound box) – stringed Instruments: plucked &bowed, guitar, mandolin, violin, piano, etc. – wind instruments: whistles, flute, saxophone, pipe organ, bag pipes, etc. – percussion instruments: plates, membranes, drums, cymbals, xylophone etc. – electronic instruments: keyboards, electric guitars, rhythm pads, etc. – analog and digital sound synthesizers, –MIDI instrument– computer generated music	6
V	RECORDING OF MUSIC & SOUND Edison phonograph – cylinder & disk records – magnetic wire and tape recorders – digital recording (e.g. to CD, DVD, etc.)– analog transducers, condenser, dynamic microphones, loudspeaker – complex sound fields – near	6

& far fields of acoustic- spectral analysis techniques - continuous & discrete Fourier transforms, digital signal processing – digital filtering – specifications of recording studios

30

TOTAL

Self -Study Simple tones, frequencies, wavelength, Musical Instruments

Textbooks

- 1. Harvey White, 2014, Physics and Music: The Science of Musical Sound. Dover Publications Inc. New York.
- 2. Barry Parker, 2009, Good Vibrations The Physics of Music. John Hopkins University Press, Baltimore
- 3. Curt Sachs, 2006, The History of Musical Instruments. Dover Publications Inc, New York
- 4. Kinko Tsuji and Stefan C. Müller, 2021, Physics and Music: Essential Connections and Illuminating Excursions, Springer Nature, Switzerland.
- 5. Panos Photinos, 2017, Musical Sounds, Instruments and Equipment, Morgan Claypool Publishers, USA

Reference Books

- 1. Gerardin Jayam. 2019. Physics in Everyday Life. Published by the Department of Physics, Holy Cross College (Autonomous), Nagercoil.
- 2. Ian Johnston, 2009, Measured Tones, 3rd edition, CRC Press, Taylor and Francis Group, New York.
- 3. Michael J Morovcsik, 2002, Musical Sound, A Solomon Press Book, Kluwer Academic/Plenum Publishers, Moscow.
- 4. Curt Sachs, 2022, The Rise of Music in the Ancient World: East And West, Gyan Publishing House, New Delhi
- 5. Panos Photinos, 2021, The Physics of Sound Waves: Music, Instruments, and Sound Equipment, 2nd Edition, IOP Publishing Ltd, UK

Web Resources

- 1. https://www.britannica.com/science/musical-sound
- 2. https://blog.landr.com/sound-recording/
- 3.https://www.britannica.com/topic/music-recording/The-development-ofmusicalrecording

4. https://ccrma.stanford.edu/CCRMA/Courses/152/vibrating_systems.html

MAPPING WITH PROGRAMME OUTCOMES

			AND	PRO	GRAN	име	SPEC	CIFIC (JUTCO	OMES		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	2	1	1	1	2	2	3	2	2	2	2
CO2	3	2	1	1	1	2	2	3	2	2	2	2
CO3	3	2	1	1	1	1	2	2	2	2	2	2
CO4	3	3	2	1	1	2	3	3	2	2	2	2
CO5	2	2	2	1	1	2	2	2	2	2	2	2
TOTAL	14	11	7	5	5	9	11	13	10	10	10	10
AVERAGE	2.8	2.2	1.4	1	1	1.8	2.2	2.6	2	2	2	2
			2	Ct.	ong 1		lium	1 L ou	7			

SEMESTER II SKILL ENHANCEMENT COURSE SEC-I: DIGITAL PHOTOGRAPHY

Course Code	т	т	D	G	Credita	Inst.	Total		Marks	
Course Code	L	1	r	3	Credits	Hours	Hours	CIA	External	Total
PU232SE1	2	-	-	-	2	2	30	25	75	100

Prerequisites:

Basic Knowledge in optics and imaging.

Learning Objectives:

- 1. To understand the principles of photography and image formation and the science and arts behind it.
- 2. To understand the essential components of conventional and digital cameras and also the different image processing techniques.

Course Outcomes

On the successful completion of the course, student will be able to:								
1	describe the principle of image formation in Photography	K2						
2	apply the parameters for controlling the images	K3						
3	identify different types of camera	K4						
4	explain the image formation in Digital Photography	K2						
5	illustrate the digital image – postproduction procedures	K3						

K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze

Units	Contents	No. of
	KO ^y	Hours
	PHOTOGRAPHY AND BASIC PRINCIPLE OF IMAGE	
	FORMATION:	
	Principle –chemical route and digital route –light, wavelengths, colours –	
Ι	shadows – light intensity and distance – making light form images –pin-	6
	hole images – practical limitations to pin-hole images – lens instead of pin-	
	hole – focal length and image size – imaging of closer subjects.	
	LENSES – CONTROLLING THE IMAGES:	
	Photographic lens – focal length and angle of view (problems) – focusing	
II	movement – aperture and f-numbers (problems) – depth of field– depth of	6
	focus – image stabilization – lenses for digital cameras – lens and camera	
	care	
	CAMERA USING FILMS AND ITS TYPES:	
III	Camera and its essential components- shutter - aperture - light	6
	measurement – film housing – camera types: view camera– view finder	
	camera – Reflex camera- single lens reflex (SLR) camera	
	DIGITAL CAMERAS PRINCIPLE AND TYPES	
	Principle of digital image capturing –comparison of digital and analog	
IV	picture information – megapixel – grain, noise and pixel density – optical	6
	and digital zooming – image stabilizer – bit depth – white balance – colour	
	modes – file formats (TIFF, RAW & amp;	
	JPEG) – storage cards and types – digital cameras: camera phones –	
	compact camera – hybrid camera – digital SLR.	
	THE DIGITAL IMAGE – POSTPRODUCTION	
	Hardware: computer and its peripherals – software: saving digital file –	
	basic editing: navigating the image – undo/redo/history – crop – rotate –	
	brightness & amp; contrast – colour balance – hue/saturation – dodge/burn	
V	– cloning & amp; retouching – removing an element in an image –	6

 printing digital images: inkjet printer – laser printer – dye sub printer – lambda/ light jet printers. 	
advanced editing: histogram/levels – curves – selection tools: magic wand	

TOTAL

30

Self-study Imaging of closer subjects; Lens and camera care; Camera and its essential components; Digital cameras: camera phones;Laser printer

Textbooks

- 1. Michel J.Langford, Anna Fox & Richard Sawdon Smith, 2010, Basic Photography, 9th Edition, Focal press, London
- 2. Henry Carroll. 2014, Read this if you want to take great photographs of people, Laurence King Publishing House.

Reference Books

- 1. Mark Galer (2006), Digital Photography in Available Light essential skills, Focal press, London
- 2. Paul Harcourt Davies (2005), The Photographer's practical handbook, UK Press

Web Resources

- 1. https://www.accessengineeringlibrary.com/binary/mheaeworks/27573c8a4e04bc1a/ 1ae690cdd3d5711fdbe6463f02945caf923faf161b30f99e05e9d8f1d5932641/principl es-of-photography-and-imaging.pdf?implicit-login=true&sigmatoken=AibpD1dgOcmXs4X3fz1ok4_1xmSXEZEQOFzoGKqkIE
- 2. https://www.masterclass.com/articles/basic-photography-101-understandingcamera-lenses
- 3. https://blog.magnasonic.com/different-film-types-formats-sizes/
- 4. https://av.jpn.support.panasonic.com/support/global/cs/dsc/knowhow/knowhow01.ht ml
- 5. https://en.wikibooks.org/wiki/Digital_Photography/Post_Processing

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4	PSO5	
CO1	3	3	3	3	3	3	3	3	3	3	3	3	
CO2	2	3	3	3	3	3	3	2	3	3	3	3	
CO3	3	3	3	2	3	3	3	3	3	3	3	3	
CO4	3	3	3	3	3	3	3	3	3	3	3	3	
CO5	3	2	3	3	3	3	3	3	2	3	3	3	
TOTAL	14	14	15	14	15	15	15	14	14	15	15	15	
AVERAGE	2.8	2.8	3	2.8	3	3	3	2.8	2.8	3	3	3	
				-	C (4 T					

3 – Strong, 2- Medium, 1- Low

SEMESTER I & II LIFE SKILL TRAINING I: CATECHISM

Course Code	т	т	р	G	Credita	Inst Hound	Total		Marks	
Course Code	L	I	r	3	Creans	Ilist. Hours	Hours	CIA	External	Total
UG232LC1	1	-	-	-	1	1	15	50	50	100

Learning Objectives:

- 1. To develop human values through value education
- 2. To understand the significance of humane and values to lead a moral life
- 3. To make the students realize how values lead to success
 - **Course Outcomes**

On t	he successful completion of the course, student will be able to:	
1	understand the aim and significance of value education	K1,K2
2	develop individual skills and act confidently in the society	K3
3	learn how to live lovingly through family values	K3
4	enhance spiritual values through strong faith in God	K6
5	learn good behaviours through social values	K6

K1 - Remember K2-Understand; K3-Apply; K6- Create

Units	Contents	No. of
		Hours
	Value Education:	
Ι	Human Values - Types of Values - Growth - Components - Need and	3
	Importance - Bible Reference: Matthew: 5:3-16	
	Individual Values: Esther	
II	Vanishing Humanity - Components of Humanity - Crisis - Balanced	3
	Emotion – Values of Life - Bible Reference: Esther 8:3-6	
	Family Values: Ruth the Moabite	
	Respecting Parents – Loving Everyone – Confession – True Love	
ттт	Bible Reference: Ruth 2:10-13	7
III	Spiritual Values: Hannah	3
	Faith in God – Wisdom – Spiritual Discipline – Fear in God – Spiritually	
	Good Deeds -Bible Reference: 1 Samuel 1:24-28	
	Social Values: Deborah	
IV	Good Behaviour – Devotion to Teachers – Save Nature – Positive Thoughts	3
	-The Role of Youth in Social Welfare - Bible Reference: Judges 4:4-9	
	Cultural Values: Mary of Bethany	
\mathbf{V}	Traditional Culture – Changing Culture – Food – Dress – Habit –	3
	Relationship – Media – The Role of Youth - Bible Reference: Luke 10:38-42	
	Total	15

Textbook

Humane and Values. Holy Cross College (Autonomous), Nagercoil The Holy Bible

SEMESTER I & II LIFE SKILL TRAINING I: MORAL

Course Code	т	т	р	G	Credita	Inst. Hours	Total		Marks	
Course Code	L	I	r	ð	Creans	Inst. nours	Hours	CIA	External	Total
UG232LM1	1	I	I	1	1	1	15	50	50	100

Learning Objectives:

- 1. To develop human values through value education
- 2. To understand the significance of humane and values to lead a moral life
- 3. To make the students realize how values lead to success

Course	Outcomes

On the successful completion of the course, student will be able to:				
1	understand the aim and significance of value education	K1,K2		
2	develop individual skills and act confidently in the society	K3		
3	learn how to live lovingly through family values	K3		
4	enhance spiritual values through strong faith in God	K6		
5	learn good behaviours through social values	K6		

K1 - Remember K2-Understand; K3-Apply; K6- Create

Units	Contents	No. of					
Cints		Hours					
	Value Education:						
Ι	Introduction – Limitations – Human Values – Types of Values – Aim	3					
	of Value Education – Growth – Components – Need and Importance						
	Individual Values:						
II	Individual Assessment – Vanishing Humanity – Components of	3					
	Humanity – Crisis – Balanced Emotion – Values of Life.						
	Family Values:						
III	Life Assessment – Respecting Parents – Loving Everyone –	3					
	Confession – True Love.						
	Spiritual Values:						
IV	Faith in God – Wisdom – Spiritual Discipline – Fear in God –	3					
	Spiritually Good Deeds.						
	Social Values:						
	Good Behaviour – Devotion to Teachers – Save Nature – Positive						
\mathbf{V}	Thoughts – Drug Free Path – The Role of Youth in Social Welfare.	3					
v	Cultural Values:	5					
	Traditional Culture – Changing Culture – Food – Dress – Habit –						
C	Relationship – Media – The Role of Youth.						
1	Total	15					

Text Book

Humane and Values. Holy Cross College (Autonomous), Nagercoil

SEMESTER III

CORE COURSE III: GENERAL MECHANICS AND CLASSICAL MECHANICS

Course Code	т	т	Р	C	Credits	Inst. Hours	Total		Marks	
Course Code	L	I	r	3	Creans	mst. nours	Hours	CIA	External	Total
PU233CC1	5	_	_	_	5	5	75	25	75	100

Pre-requisite:

Basic knowledge of physics principles, Laws of conservation and Rigid Body.

Learning Objectives:

- 1. To have a basic understanding of the laws and principles of mechanics and to apply the concepts of forces existing in the system.
- **2.** To understand the forces of physics in everyday life and to apply Lagrangian equation for solving complex problems.

Course (Dutcomes
----------	----------

On the successful completion of the course, students will be able to:				
recognize Newton's Law of motion, general theory of relativity, Kepler's laws	K1			
and the basic principles behind planetary motion.	N1			
infer the knowledge on the conservation laws.	K2			
relate conservation law and calculate energy of various systems, understand and	K3			
differentiate conservative and non–conservative forces.	КJ			
devise concepts of rigid body dynamics and solve problems.	K4			
defend Lagrangian system of mechanics and D' Alembert's principle.	K5			
	and the basic principles behind planetary motion. infer the knowledge on the conservation laws. relate conservation law and calculate energy of various systems, understand and differentiate conservative and non–conservative forces. devise concepts of rigid body dynamics and solve problems.			

K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyse; K5 – Evaluate

Units	Contents	No. of Hours
I	LAWS OF MOTION Newton's Laws- forces – equations of motion – motion of a particle in a uniform gravitational field –Gravitation: Classical theory of gravitation– Kepler's laws, Newton's law of gravitation – Determination of G by Boy's method – Earth-moon system– Earth satellites –Earth density – mass of the Sun – gravitational potential – velocity of escape –Einstein's theory of gravitation – introduction – Principle of equivalence– gravitational red shift – bending of light.	15
п	CONSERVATION LAWS OF LINEAR AND ANGULAR MOMENTUM Conservation of linear and angular momentum – Internal forces and momentum conservation – Centre of mass – Examples – General elastic collision of particles of different masses – System with variable mass – Examples – Conservation of angular momentum – Torque due to internal forces – Torque due to gravity – Angular momentum about centre of mass – Proton scattering by heavy nucleus.	15
ш	CONSERVATION LAWS OF ENERGY Introduction – Significance of conservation laws – Law of conservation of energy – Work – Power – Work – Kinetic energy theorem– Work done in lifting and lowering an object – Conservative forces – Work done by spring force – Work done by the gravitational force – Gravitational potential energy and elastic potential energy – Examples – Non–conservative forces	15

IV	RIGID BODY DYNAMICS Translational and rotational motion – Angular momentum – Moment of inertia – General theorems of moment of inertia – Examples – Rotation about fixed axis – Kinetic energy of rotation – Examples – Body rolling along a plane surface – Body rolling down an inclined plane – Gyroscopic precision – Gyrostatic applications.	15
v	LAGRANGIAN MECHANICS Generalized coordinates –Degrees of freedom – Constraints – Holonomic and non–holonomic –Scleronomic and rheonomic constraints – Principle of virtual work and D' Alembert's Principle –Lagrange's equation from D' Alembert's principle – Application – Simple pendulum – Atwood's machine.	15
	Total	75

Self-study Kepler's laws, Newton's law of

Textbooks

- 1. Upadhyaya J C, 2019. Classical Mechanics, Himalaya Publishing house, Mumbai.
- 2. Halliday, David Robert Resnick, Walker Jearl, 2008. *Fundamentals of Physics*, John Wiley, New Delhi
- 3. Durai Pandian P, Laxmi Durai Pandian, Muthamizh Jayapragasam, 2005. *Mechanics*, (6th Edition), S. Chand & Co, Chennai.

Reference Books

- 1. Goldstein Herbert, 2011. *Classical Mechanics*, (3rd Edition), Dorling Kindersley Pearson Education, India.
- 2. Mathur D S, Hemne P S, 2012. *Mechanics*, (Revised Edition), Chand and Co, New Delhi.
- 3. Roy N R, 2016. *Introduction to Classical Mechanics*, (1st Edition), Vikas Publishing House, New Delhi.
- 4. Rao K, 2003. Classical Mechanics, Universities Press, India.
- 5. Narayanamurthi, Nagarathnam N, 1998. Dynamics, National Publishing, Chennai.

Web Resources

- 1. https://youtu.be/X4_K-XLUIB4
- 2. https://nptel.ac.in/courses/115103115
- 3. https://www.youtube.com/watch?v=p075LPq3Eas
- 4. https://www.youtube.com/watch?v=mH_pS6fruyg
- 5. https://onlinecourses.nptel.ac.in/noc22_me96/preview

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	2	3	3	2	3	3	3	3
CO2	3	3	3	3	3	2	3	3	2	3	3	3
CO3	3	3	3	3	2	3	3	2	3	3	3	3
CO4	3	3	3	3	2	3	3	2	3	3	3	3
CO5	3	3	3	3	3	2	3	3	2	3	3	3
TOTAL	15	15	15	15	12	13	15	12	13	15	15	15
AVERAGI	E 3	3	3	3	2.4	2.6	3	2.4	2.6	3	3	3

3 – Strong, 2– Medium, 1– Low

١

SEMESTER III CORE LAB COURSE III: GENERAL PHYSICS LAB III

Course Code	т	т	р	S	Credits	Inst. Hours	Total	Marks		
Course Code	L	I	r	S	Creans	mst. nours	Hours	CIA	External	Total
PU233CP1	-	1	3	-	3	3	45	25	75	100

Pre-requisite:

Knowledge on basic Physics, Electricity, Magnetism and Arithmetic.

Learning Objectives:

- 1. To understand electricity, current, resistance, and circuit parameters by constructing different circuits.
- 2. To apply the concepts of electricity, current, resistance, and circuit parameters for setting up experiments, and then observe, analyse and assimilate the concepts.

Course	Outcomes

Ont	the successful completion of the course, students will be able to:						
1.	remember and understand the scientific method to construct simple circuits.	K1&K2					
2.	apply basic skills and attitudes enabling application in the physics field.	K3					
2	analyse the physical principle involved in the various instruments such as	K4					
5.	^{3.} potentiometer, galvanometer, electrical bridge etc.						
1	4. evaluate a record of experiments in a clear and structured written format						
4.	augmented with relevant figures and graphs wherever needed.	K5					
5.	develop prototypes by utilizing physics concepts in practical situations.	K6					
K1 -	- Remember; K2 – Understand; K3 – Apply; K4 – Analyse; K5 – Evaluate; K6	– Create					
	Contents (Any Eight experiments)						
1.	Calibration of low range voltmeter using potentiometer						
2.	Calibration of ammeter using potentiometer.						
3.	Compare the capacitances of two capacitors by forming De Sauty's bridge.						
4.	Determine self-inductance of the coil using Owen's bridge.						
5.	Determine the resonant frequency, inductance of the coil, band width						
	magnification factor and quality factor (Q) of the LCR - Series resonance cir	cuit.					
6.	Determination of figure of merit of BG.						
7.	Construct a Zener diode voltage regulator and measure its DC output.						
8.	Construct Zener Diode circuit in Forward and Reverse bias and ana	alyze V-I					
	Characteristics of Zener diode.						
9.	Determine absolute value of the magnetic dipole moment (M) of the given of						
	earth's horizontal magnetic induction (B _H) using deflection and	vibration					
	magnetometer.						
10		axis of a					
	circular coil caring current.						
	Determination of absolute capacitance using BG.	,					
	. Determination of earth's magnetic field using field along axis of current carr	ying coil.					
	tbooks						
	. Ouseph C, Rao U J, Vijayendran V, 2007. Practical Physics and Ele	ectronics,					
~	S. Viswanathan, Pvt., Ltd. Chennai.						
	2. Arora C L, 2001. B.Sc. <i>Practical Physics</i> , S. Chand Publishing, New Delhi.	D 1					
-	3. Srinivasan M N, Balasubramanian S, Ranganathan R, 2013. A Textbook of Bhuniag S. Chand Publishing New Dalki	Practical					
/	Physics, S. Chand Publishing, New Delhi.	Edition					
4	 Wood L, Sladjana, 2017. General Physics Lab Manual, Volume Two (Third American Press, United States. 	Equition)					
5	5. Harnam Singh, 2000. B.Sc. Practical Physics, S. Chand Publishing, New Del	lhi					
Ĵ	. Tramam Singh, 2000. D.Sc. Fractical Flysics, S. Chand Fublishing, New Del						

Reference Books

- 1. Shukla R K, 2007. *Practical Physics*. New Age International (P) Limited, Publishers. India.
- 2. Ware M J, Peatross J, 2015. *Physics of Light and Optics*, Black & White Brigham Young University, Department of Physics, United States.
- 3. James J F, 2014. An Introduction to Practical Laboratory Optics. Cambridge University Press, United Kingdom
- 4. Henderson J, 2006. *Practical Electricity and Magnetism*. Longmans Green and Company, India.
- 5. Purcell E M, 2013. *Electricity and Magnetism*. Cambridge University Press, United Kingdom.

Web Resources

- 1. https://youtu.be/3eC3qtGOENA?si=9HSj8ENuBZMmkgJd
- 2. https://youtu.be/AWkmfIH_MNA?si=cvTPWfVHTjKhed8Q
- 3. https://youtu.be/Lga4b7j-MQM?si=_-bsXaaOUoq_bUpQ
- 4. https://youtu.be/PfBQEhLKDRc?si=P5ze_milbPw2egNf
- 5. https://youtu.be/ugO1G7_1a-o?si=yG2vmtZMS7jUFGLl

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	2	2	3	3	3	3	3	3	3
CO2	3	3	3	2	2	3	3	3	3	3	3	3
CO3	3	3	3	2	2	3	3	3	3	3	3	3
CO4	3	2	2	2	2	3	2	2	2	3	3	2
CO5	3	2	2	3	3	2	2	2	2	3	3	2
TOTAL	15	13	13	11	11	14	13	13	13	15	15	13
AVERAGE	3	2.6	2.6	2.2	2.2	2.8	2.6	2.6	2.6	3	3	2.6

3 – Strong, 2- Medium, 1- Low

SEMESTER III

ELECTIVE COURSE III: ALLIED PHYSICS FOR CHEMISTRY – I

Course Code	т	т	р	G	Credita	Inst. Hours	Total	Marks		
Course Code	L	I	r	3	Creans	mst. nours	Hours	CIA	External	Total
PU233EC1	4	I	-	-	3	4	60	25	75	100

Pre-requisite:

Basic knowledge of physics principles, Properties of Matter, Waves

Learning Objectives:

- 1. To gain a comprehensive understanding of the fundamental principles in Physics.
- 2. To develop skills for interpreting physical phenomena beneficial for students who have taken programmes other than Physics.

Course	Outcomes
--------	----------

On the successful completion of the course, students will be able to:						
1.	identify the basic concepts in waves, characteristics of matter, electricity and magnetism, as well as electronics.	K1				
2.	interpret the principles of ultrasonics and surface tension, and explore their practical applications within the medical domain.	K2				
3.	articulate real-world solutions leveraging the principles of electricity, magnetism, and electronics within the framework of Digital India.	K3				
4.	categorise physics principles in everyday situations.	K4				
5.	prioritize Boolean algebraic concepts in practical scenarios.	K5				

K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyse; K5 – Evaluate

Units	Contents	No. of Hours
I	PROPERTIES OF MATTER Elasticity: Elastic constants – Bending of beam – Theory of non- uniform bending – Determination of Young's modulus by non-uniform bending – determination of rigidity modulus by torsional pendulum Viscosity: streamline and turbulent motion – Critical velocity – Coefficient of viscosity Surface tension: definition – Interfacial surface tension - Drop weight method	12
п	HEAT AND THERMODYNAMICS Joule-Kelvin effect – Joule-Thomson porous plug experiment – Temperature of inversion –Liquefaction of Oxygen – Linde's process of liquefaction of air – Liquid Oxygen for medical purpose- Laws of thermodynamics – Entropy – Heat engine – Carnot's cycle – Efficiency	12
ш	ELECTRICITY AND MAGNETISM Potentiometer– Principle – measurement of thermo emf using potentiometer – Magnetic field due to a current carrying conductor – Biot Savart's law – peak, average and RMS values of ac current and voltage – power factor and current values in an AC circuit – Types of switches in household and factories	12
IV	WAVES, OSCILLATIONS AND ULTRASONICS Simple Harmonic Motion – composition of two SHMs at right angles (periods in the ratio 1:1) – Laws of transverse vibrations of strings – Determination of AC frequency using sonometer – Ultrasound – production –Piezoelectric method – Application of ultrasonics.	12

V	DIGITAL ELECTRONICS AND DIGITAL INDIA Logic gates, OR, AND, NOT logic gates – Boolean algebra – De Morgan's theorem – verification – Overview of Government initiatives: software technological parks under MeitY (Ministry of Electronics and Information Technology), NIELIT (National Institute of Electronics & Information Technology) - Semiconductor laboratories under Dept. of Space – An introduction to Digital India.	12
	Total	60

Textbooks

- 1. Ubald Raj A, Jose Robin G, 2012. Allied Physics, Indira Publications. Marthandam.
- 2. Murugesan R, 2001. Allied Physics, S. Chand & Co., New Delhi.
- 3. Murugesan R, 2017. *Electricity and Magnetism*, S. Chand & Co., New Delhi.
- 4. Hugh D Young, Rogger A, Freedman, 2015. University Physics with Modern Physics, Pearson Publishers, Chennai.

Reference Books

- 1. Murugesan R, 2012. Properties of Matter, S. Chand & Co., New Delhi.
- 2. Mathur D S, 2010. Elements of Properties of Matter, S. Chand& Co., New Delhi.
- 3. Brijlal, Subramaniam N, Henne P S, 2008. Heat Thermodynamics and Statistical Physics, Revised Edition, S Chand & Co., New Delhi.
- 4. Ubald Raj A, Jose Robin G. 2004. Basic Electronics, Indira Publications. Marthandam.
- 5. David Halliday, Robert Resnick, Jearl Walker, 2013. Fundamentals of Physics, Wiley Publishers, India.

Web Resources

- 1. https://youtu.be/M_5KYncYNyc
- 2. https://www.youtube.com/watch?v=9mXOMzUruMQ&t=1s
- 3. https://www.youtube.com/watch?v=m4u-SuaSu1s&t=3s
- 4. https://www.biolinscientific.com/blog/what-are-surfactants-and-how-do-they-work
- 5. https://learningtechnologyofficial.com/category/fluid-mechanics-lab/

	AND PROGRAMME SPECIFIC OUTCOMES												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4	PSO5	
CO1	3	3	1	1	1	1	2	3	2	2	3	1	
CO2	3	3	3	1	2	2	2	3	3	3	3	3	
CO3	3	3	3	3	3	3	3	3	3	3	3	3	
CO4	3	3	3	3	2	2	2	3	3	3	2	3	
CO5	3	3	3	2	3	3	3	3	3	3	3	3	
TOTAL	15	15	14	10	11	11	12	15	14	14	14	13	
AVERAGE	3	3	2.8	2	2.2	2.2	2.4	3	2.8	2.8	2.8	2.6	
								4 -					

MAPPING WITH PROGRAMME OUTCOMES

^{3 –} Strong, 2- Medium, 1- Low

SEMESTER III ELECTIVE LAB COURSE I: ALLIED PHYSICS PRACTICAL FOR CHEMISTRY – I

Course	т	т	р	C	Credits	Inst.	Total		Marks	
Code	L	1	r	3	Credits	Hours	Hours	CIA	External	Total
PU233EP1	-	-	2	-	2	2	30	25	75	100

Pre-requisite:

Knowledge in basic Physics.

Learning Objectives:

- 1. To make the students more innovative, in hands on experiments.
- 2. To elucidate theory through simple experiments in physics.

	Course Outcomes	
On t	the successful completion of the course, student will be able to:	\mathcal{I}
1.	remember the basic principles of Physics through experiments.	K1
2.	interpret the handling of various instruments.	K2
3.	relate the various physical parameters for measuring properties of the given material.	K3
4.	devise the implications of working principle of logic gates.	K4
5.	estimate the Q-factors and design simple electronic circuits.	K5&K6

K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyse; K5 - Evaluate; K6 - Create

Minimum of Eight Experiments from the list:

- 1. Young's modulus by non-uniform bending using pin and microscope
- 2. Young's modulus by non-uniform bending using optic lever, scale and telescope
- 3. Surface tension and interfacial Surface tension drop weight method
- 4. Comparison of viscosities of two liquids burette method
- 5. Determination of co-efficient of viscosity-Variable pressure head
- 6. Calibration of low range voltmeter using potentiometer
- 7. Calibration of ammeter using potentiometer.
- 8. Verification of truth tables of basic logic gates using ICs
- 9. Determination of rigidity modulus without mass using Torsional pendulum.
- 10. Verification of truth tables of AND, OR and NOT using NAND (IC 7400)
- 11. Resonance Frequency of the LCR circuit

Note: Use of digital balance is permitted

Textbooks

- 1. Ubald Raj A, Jose Robin G, 2012. Allied Physics, Indira Publications, Marthandam.
- 2. Jerry D. Wilson, Cecilia A. Hernández-Hall, 2017. *Physics laboratory experiments*, Cengage Learning publishers, Delhi.
- 3. Hugh D Young, Rogger A. Freedman, 2015. *University Physics with Modern Physics*, Pearson Publishers, Chennai.
- 4. David Halliday, Robert Resnick, Jearl Walker, 2013. *Fundamentals of Physics*, Wiley Publishers, India.

Reference Books

- 1. Jerry D, Wilson, Cecilia A. Hernández-Hall, 2003. *Experimental Physics: Modern Methods*, Cengage Learning publishers, Delhi.
- 2. Donald E, Simanek, Derek K, Senft, 2005. *Laboratory Manual for Introductory Physics*, John Wiley & Sons, United States.
- 3. Squires G L, Practical Physics, 2001. Cambridge University Press. India

- 4. Savant C J, 2014. *Experiments in Physics for Students of Science and Engineering*, Cengage Learning publishers, Delhi.
- 5. David H, Loyd, 2012. *Physics Laboratory Manual*, Cengage Learning publishers, Delhi.

Web Resources

- 1. https://www.youtube.com/watch?v=TZWk5-8R5tc
- 2. https://www.electricaldeck.com/2021/04/calibration-of-voltmeter-ammeter-wattmeter-using-potentiometer.html
- 3. https://www.youtube.com/watch?v=TeWPWBbS9tI
- 4. https://www.youtube.com/watch?v=0J1jFa8Uhpw
- 5. https://de-iitr.vlabs.ac.in/exp/truth-table-gates/theory.html

	-	0	•
MAPPING V	VITH PROC	GRAMME	OUTCOMES
AND PROG	FRAMME S	PECIFIC	OUTCOMES

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	1	1	1	1	2	3	2	2	3	1
CO2	3	3	3	1	2	2	2	3	3	3	3	3
CO3	3	3	3	3	3	3	3	3	3	3	3	3
CO4	3	3	3	3	2	2	2	3	3	3	2	3
CO5	3	3	3	2	3	3	3	3	3	3	3	3
TOTAL	15	15	14	10	11	11	12	15	14	14	14	13
AVERAGE	3	3	2.8	2	2.2	2.2	2.4	3	2.8	2.8	2.8	2.6

3 – Strong, 2- Medium, 1- Low

SEMESTER III

SKILL I	ENHA	NC	EMENT	COURSE SEC	c -II: AST	ROPHYSICS

Course Code	т	т	р	S	Credits	Inst. Hours	Total	Marks			
Course Code	L	I	r	3	Creans	Inst. Hours	Hours		External	Total	
PU233SE1	2	-	-	-	2	2	30	25	75	100	

Pre-requisite: Basics of Solar Systems, Galaxies and Planets.

Learning Objectives:

- 1. To introduce principles of astrophysics describing the science of formation and evolution of stars and interpretation of various heavenly phenomena.
- 2. To provide an understanding of the physical nature of celestial bodies.

	Course Outcomes	
On the	successful completion of the course, students will be able to:	
1.	recall the total and annular solar and lunar eclipses.	K 1
2.	summarize the different layers of the Sun and its phenomenon.	K2
3.	articulate the basic concepts of Solar systems on planetary motion.	K3
4.	relate the distinct properties of planets revolving around the sun.	K4
5.	grade the principle of planetary motion towards science and technology.	К5

K1 - Remember; K2 - Understand; K3 – Apply; K4 - Analyse; K5 – Evaluate

Units	Contents	No. of Hours
I	THE SUN The Sun – A typical star – Photosphere – Limb darkening – Chromosphere – Spicules – Plages and filaments - Solar corona – The inner corona – The outer corona – The emission corona - prominences – sunspots - solar flares	6
п	SOLAR SYSTEM Comets – Nucleus – Coma – Hydrogen cloud – Dust tail – Ion tail - Asteroids – Debris – Meteors – Shooting stars – Falling stars – Meteoroids – Crater - Kuiper belt – Oort cloud - Bode's law of planetary distances	6
III	ECLIPSES Types of eclipses – Solar eclipse – Solar eclipse geometry - Total and annular solar eclipse – Lunar eclipse – Umbra – Penumbra - Total and partial lunar eclipse	6
IV	INNER PLANETS Mercury: Planet closest to the sun – Venus: Earth's twin - Earth: The water planet – Mars: The red planet	6
V	OUTER PLANETS Jupiter: The largest planet – Saturn: The ringed planet – Uranus: Neptune's twin – Neptune: The blue planet – Pluto – Dwarf planet.	6
	Total	30

Self-study Solar Corona, shooting stars, total and partial lunar eclipse, greenhouse effect

Textbooks

1. Baidyanath Basu, 2010. *An introduction to Astrophysics*, (2nd Edition), Prentice Hall of India (P) Ltd, New Delhi.

- 2. Krishnaswamy K S, 2002. Astrophysics: a modern perspective, New Age International (P) Ltd, New Delhi.
- 3. Shylaja B S, Madhusudan H. R, 1999. *Eclipse: A Celestial Shadow Play*, Universities Press Private limited, India.
- 4. Bradley W Carroll, 2017. *An introduction to modern astrophysics*, (3rd Edition), University Press, Cambridge.
- 5. Charles Keeton, 2014. Principles of Astrophysics, Springer.

Reference Books

- 1. Abhyankar K D, 2009. *Astrophysics of the solar system*, (2nd Edition), Universities press Private limited, India.
- 2. Stan Owocki, 2021. Fundamentals of Astrophysics, Cambridge University Press.
- 3. Gerardin Jeyam, 2008. *Physics Everyday*, Holy Cross College (Autonomous), Nagercoil.
- 4. Gourav Banerjee, 2021. Becoming an Astronomer: A Friendly Guide to Pursue Astronomy as a Career, Palmview Publishing, Kolkata.
- 5. Madhur Sorout, 2019. Astrophysics Simplified: A Simple Guide to the Universe, Notion Press, Chennai.

Web Resources

- 1. https://optcorp.com/blogs/telescopes-101/refractor-vs-reflector-telescopes
- 2. https://pages.uoregon.edu/jschombe/glossary/bode_titus_relation.html
- 3. https://www.timeanddate.com/eclipse/eclipse-information.html
- 4. https://pressbooks.online.ucf.edu/astronomybc/chapter/23-1-the-death-of-low-massstars/
- 5. https://science.nasa.gov/universe/galaxies/types/

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

	PO1	PO1	DU3	PO4	PO5	PO6	PO7	PSO1	DCU1	DCU3	DSU1	DSO5
	IUI	104	105	104	105	100	10/	1501	1302	1303	1304	1505
CO1	3	3	3	1	2	3	3	3	3	3	1	2
CO2	3	3	3	2	3	3	3	3	3	3	2	3
CO3	3	2	3	3	1	3	3	3	2	3	3	1
CO4	3	3	3	2	2	3	3	3	3	3	2	2
CO5	3	2	3	3	2	3	3	3	2	3	3	3
TOTAL	15	13	15	11	10	15	15	15	13	15	13	11
AVERAGE	3	2.6	3	2.2	2	3	3	3	2.6	3	2.6	2.2
			2	C 4	•	3 4 19		т				

SEMESTER III / IV

SKILL ENHANCEMENT COURSE SEC – IV: DIGITAL FLUENCY

Course Code	т	т	р	G	Credita	S Credita	dita nat Loung	Total		Marks	
Course Coue	L	I	r	3	Creans	Inst. nours	Hours	CIA	External	Total	
UG23CSE2	2	-	-	-	2	2	30	50	50	100	

Pre-requisite: Basic computer knowledge

Learning Objectives:

1. To provide a comprehensive suite of productivity tools that enhance efficiency

2. To build essential soft skills that are needed for professional success.

Course Outcomes

On the successful completion of the course, students will be able to:								
1.	work with text, themes and styles	K1						
2.	produce a mail merge	K2						
3.	secure information in an Excel workbook	K2						
4.	perform documentation and presentation skills	K2, K3						
5.	add special effects to slide transitions	K3						

K1 - Remember; **K2** - Understand; **K3** – Apply

Units	Contents	No. of
0.1105		Hours
Ι	Microsoft Word 2010: Starting Word 2010 - Understanding the Word Program Screen - Giving Commands in Word - Using Command Shortcuts – Document: Creating - Opening - Previewing - Printing and Saving. Getting Started with Documents: Entering and Deleting Text - Navigating through a Document - Viewing a Document. Working with and Editing Text: Spell Check and Grammar Check- Finding and Replacing Text - Inserting Symbols and Special Characters – Copying, Moving, and Pasting Text.	6
п	Formatting Characters and Paragraphs : Changing Font Type, Font Size, Font Color, Font Styles and Effects, Text Case, Creating Lists, Paragraph Alignment, Paragraph Borders and Shadings, Spacing between Paragraphs and Lines. Formatting the Page: Adjusting Margins, Page Orientation and Size, Columns and Ordering, Headers and Footers, Page Numbering. Working with Shapes, Pictures and SmartArt: Inserting Clip Art, Pictures and Graphics File, Resize Graphics, Removing Picture's Background, Text Boxes, Smart Art, Applying Special Effects. Working with Tables: Create Table, Add and delete Row or Column, Apply Table Style - Working with Mailings.	6
ш	Microsoft Excel 2010: Creating Workbooks and Entering Data: Creating and Saving a New Workbook - Navigating the Excel Interface, Worksheets, and Workbooks - Entering Data in Worksheets - Inserting, Deleting, and Rearranging Worksheets. Formatting Worksheets: Inserting and Deleting Rows, Columns and Cells - Formatting Cells and Ranges - Printing your Excel Worksheets and Workbooks. Crunching Numbers with Formulas and Functions: Difference between Formulae and Functions - Applying Functions. Creating Powerful and Persuasive Charts: Creating, Laying Out, and Formatting a Chart.	6
IV	Microsoft PowerPoint 2010: Creating a Presentation - Changing the Slide Size and Orientation - Navigating the PowerPoint Window - Add content to a Slide - Adding, Deleting, and Rearranging Slides - Using views to work on Presentation. Creating Clear and Compelling Slides: Planning the Slides in Presentation - Choosing Slide Layouts to Suit the Contents - Adding Tables, SmartArt, Charts, Pictures, Movies,	6

	Sounds, Transitions and Animations - Slideshow.	
v	Digital Platforms: Graphic Design Platform: Canva - Logo Making, Invitation Designing. E-learning Platform: Virtual Meet – Technical Requirements, Scheduling Meetings, Sharing Presentations, Recording the Meetings. Online Forms: Creating Questionnaire, Publishing Questionnaire, Analyzing the Responses, Downloading the Response to Spreadsheet.	6
	Total	30

Self-study Parts of a computer and their functions

Textbook:

Anto Hepzie Bai J. & Divya Merry Malar J.,2024, Digital Fluency, Nanjil Publications, Nagercoil.

Reference Books:

- 1. Steve Schwartz, 2017, Microsoft Office 2010 for Windows, Peachpit Press.
- 2. Ramesh Bangia, 2015, Learning Microsoft Office 2010, Khanna Book Publishing Company.
- 3. Bittu Kumar, 2018, Mastering MS Office, V & S Publishers.
- 4. James Bernstein, 2020, Google Meet Made Easy, e-book, Amazon.
- 5. Zeldman, Jeffrey, 2005, Web Standards Design Guide, Charles River Media.

Web Resources:

- 1. https://www.youtube.com/watch?v=oocieLn6umo
- 2. https://www.youtube.com/watch?v=pPSwbK4_GdY
- 3. https://www.youtube.com/watch?v=DKAiSDhU4To
- 4. https://www.youtube.com/watch?v=sbeyPahs-ng
- 5. https://www.youtube.com/watch?v=fACEzzmXelY

SEMESTER III

SPECIFIC VALUE-ADDED COURSE: FUNDAMENTALS OF MS- EXCEL

Course Code	т	т	Р	S	Credits	Inst Hound	Total		Marks		
Course Code	L	I				Inst. nours	Hours	CIA	External	Total	
PU233V01	2	-	-	•	1	2	30	25	75	100	

Pre-requisite:

Basic knowledge of MS- Excel.

Learning Objectives:

- 1. To understand the fundamental principles of Microsoft Excel and its features.
- 2. To apply knowledge of Excel in data analysis.
- **Course Outcomes**

In the s	uccessful completion of the course, students will be able to:							
1.	1. illustrate Microsoft Excel and its features.							
2.	understand the formula functions – sum - average, if, count, max, min, proper, upper, lower, using autosum.							
3.	apply Excel features for designing and integrating calculations.	K3						
4.	analyse spreadsheet enhanced functionality.	K4						
5.	evaluate table data analysis.	K5						

K1- Remember- K2- Understand- K3 – Apply- K4- Analyze- K5- Evaluate

Units	Contents	No. of Hours
I	FUNDAMENTALS OF MS EXCEL MS Excel software - Spreadsheet window pane - Title Bar - Menu Bar - Standard Toolbar - Formatting Toolbar - the Ribbon -File Tab and Backstage View - Formula Bar - Workbook Window - Status Bar.	6
II	RANGES AND FUNCTIONS Using Ranges - Selecting Ranges - Entering Information Into a Range - Using AutoFill Creating Formulas- Formula Functions – Sum - Average, if, Count, max, min, Proper, Upper, Lower, Using AutoSum.	6
III	PIVOT TABLES Sorting, Filter - Text to Column - Data Validation PivotTables - Creating PivotTables - Manipulating a PivotTable - Using the PivotTable Toolbar - Changing Data Field – Properties.	6
IV	WORKSHEETS Moving between Spreadsheets, Selecting Multiple Spreadsheets - Inserting and Deleting Spreadsheets -Copying and Pasting Data between Spreadsheets - Hiding - Protecting worksheets.	6
v	SPECIAL TECHNIQUES Concatenate, Vlookup, Hlookup, Match, Countif, Text, Trim Spreadsheet Charts- Different types of chart, Formatting Chart Objects - Showing and Hiding the Data.	6
	Total	30

Self-study S

Spreadsheets, Data analysis

Textbooks

- 1. Ken Bluttman, 2020. Microsoft Excel Formulas & Functions for Dummies, Wiley, USA.
- 2. M.L. Humphrey, 2019. Intermediate Excel: 2 (Excel Essentials), Humphrey Publishers, UK.

Reference Books

- 1. M.L. Humphrey, 2019. Excel for Beginners, Humphrey Publishers, UK.
- 2. Lokesh Lalwani, 2019. Excel 2019 All-In-One: Master the new features of Excel 2019 / Office 365, BPB Publications, India.
- 3. Ritu Arora, 2023. Mastering Advanced Excel, BPB Publications, India.
- 4. Jordan Goldmeier, 2014. Advanced Excel Essentials, Apress, UK.
- 5. Alan Murray, 2022. Advanced Excel Formulas: Unleashing Brilliance with Excel Formulas, Apress, UK.

Web Resources

- 1. https://excel-practice-online.com/
- 2. https://intellipaat.com/ course
- 3. https://www.simplilearn.com/tutorials/excel-tutorial/excel-basics
- 4. https://support.microsoft.com/en-us/office/basic-tasks-in-excel-dc775dd1-fa52-430f-9c3c-d998d1735fca
- 5. https://corporatefinanceinstitute.com/resources/excel/basic-excel-formulasbeginners/

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

AND I KOGRAMIVIE SI ECHTE OUTCOMES												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	1	2	3	3	3	3	3	1	2
CO2	3	3	3	2	3	3	3	3	3	3	2	3
CO3	3	2	3	3		3	3	3	2	3	3	1
CO4	3	3	3	2	2	3	3	3	3	3	2	2
CO5	3	2	3	3	2	3	3	3	2	3	3	3
TOTAL	15	13	15	11	10	15	15	15	13	15	13	11
AVERAGE	3	2.6	3	2.2	2	3	3	3	2.6	3	2.6	2.2

SEMESTER III SPECIFIC VALUE-ADDED COURSE: APPLICATIONS OF LASER

Course Code	т	т	Р	C	Credits I	Inst. Hours	Total	Marks			
Course Code	L	I	r	ð		Inst. nours	Hours	CIA	External	Total	
PU233V02	2	-	-	•	1	2	30	25	75	100	

Pre-requisite:

Basic knowledge of Lasers.

Learning Objectives:

1.To understand the fundamental principles of Lasers, including their operation, types, and characteristics.

2.To apply knowledge of the basics of lasers and their diversified applications

	Course Outcomes							
On the successful completion of the course, students will be able to:								
1.	identify Laser types, principles, and applications in modern technology	K1						
2.	understand the working mechanism of lasers.	K2						
3.	use the principle of lasers in designing and integrating Lasers into appliance systems.	К3						
4.	contrast different types of lasers, laser instrumentation and their applications.	K4						
5.	evaluate laser systems, their characteristics and diversified applications including industry, medicine and astronomy.	К5						

K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyse; K5 - Evaluate

Units	Contents	No. of Hours
I	FUNDAMENTALS OF LASER Basic principles-Spontaneous and stimulated emission – Einstein'scoefficient – pumping mechanism- optical, electrical and laser pumping – population inversion	6
II	TYPES OF LASER Solidstatelaser- rubylaser- Nd:YAG laser- Nd:Glass laser- semiconductor laser- intrinsic semiconductor laser - doped semiconductorlaser	6
III	APPLICATIONS OF LASER IN INDUSTRY Application of laser in metrology – optical communication – material processing - laser instrumentation of material processing- powder feeder- Laser instruments	6
IV	APPLICATIONS OF LASER IN MEDICINE Medical application in eye related surgeries– Laser instrumentation for surgeries– Monochromaticity- Spatial and temporal coherence- rightness- Focus ability- ultra-short pulse generation- Peak Power	6
v	APPLICATIONS OF LASER IN ASTRONOMY Laser resonators- General conditions of stability- Plane and spherical mirror cavities- Modes and optical resonators- Gaussian beam propagation- laser telescopes in optical and radio space instruments	6
	Total	30

Self-study

Semiconductor laser, Conditions of stability

Textbooks

- 1. Laud Metha B B, 2013. *Laser and Non-linear Optics*, New Age International Publications, (3rd Edition), NewDelhi.
- 2. Avadhunulu A, 2020, *An Introduction to laser, theory and applications* M.N.S., Chand&Co, NewDelhi
- 3. Anokh Singh, Chopra A K, 2013. *Principles of communication Engineering*, S. Chand & CoLtd, New Delhi.
- 4. Chitode J S, 2020. *Digital Communications*, Unicorn publications, Chennai.
- 5. Senior John, 2010. Laser Communications, Pearson Education, India.

Reference Books

- 1. Dennis Roody, Coolen, 1995. *Electronic communications*. Prentice Hall of India, (4th Edition), New Jersey: Prentice Hall.
- 2. Ohba R, 2006. *Advanced electronics communication systems*. New York: John Wiley & Sons.
- 3. Pallas Areny R, Webster J G, 1999. *Electronics communications*, New York: John Wiley & Sons.
- 4. Wayne Tomasi, 1998. Advanced Electronics communication System, (4th edition), Prentice Hall of India, India.
- 5. Salivahanan, S , 2015. *Laser Devices and Circuits*, Tata McGraw-Hill Publishing Company Limited, New Delhi.

Web Resources

- 1. https://www.geeksforgeeks.org/digital-electronics-laser-tutorials/
- 2. https://www.polytechnichub.com/laser instruments/
- 3. http://nptel.iitm.ac.in/laser applications./
- 4. http://web.ewu.edu/
- 5. http://nptel.iitm.ac.in/

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	1	2	3	3	3	3	3	1	2
CO2	3	3	3	2	3	3	3	3	3	3	2	3
CO3	3	2	3	3	1	3	3	3	2	3	3	1
CO4	3	3	3	2	2	3	3	3	3	3	2	2
CO5	3	2	3	3	2	3	3	3	2	3	3	3
TOTAL	15	13	15	11	10	15	15	15	13	15	13	11
AVERAGE	3	2.6	3	2.2	2	3	3	3	2.6	3	2.6	2.2
			2	C 4		N. I.	1	Т				

SEMESTER III SPECIFIC VALUE-ADDED COURSE: MEDICAL IMAGING

Course Code	т	т	р	G	Credita	Inst Hound	Total			
Course Code	L	1	P	S	Creans	Inst. nours	Hours	CIA	External	Total
PU233V03	2	-	-	•	1	2	30	25	75	100

Pre-requisite:

Basic knowledge of medical physics.

Learning Objectives

- 1. To understand the fundamental principles of instruments like ECG,EEG including their operation, types, and characteristics.
- 2.To apply knowledge of the basics of medical imaging, diagnostic specialties, operation theatre and their expanded applications.

Course Outcomes

On the successful completion of the course, students will be able to:							
identify medical imaging types, principles, and applications in modern	K1						
07							
understand bio-potential based instrumentation.	K2						
apply principles of ECG,EEG into medical systems.	K3						
analyse medical imaging instrumentation and their applications.	K4						
evaluate medical systems, their characteristics and diversified	К5						
	identify medical imaging types, principles, and applications in modern technology. understand bio-potential based instrumentation. apply principles of ECG,EEG into medical systems. analyse medical imaging instrumentation and their applications.						

K1- Remember- K2- Understand- K3 – Apply- K4- Analyze- K5- Evaluate

Units	Contents	No. of Hours
I	DESIGN OF MEDICAL INSTRUMENTS Components of bio-medical instrumentation – electrodes – electrode potential – metal microelectrode – depth and needle electrodes – types of surface electrode – the pH electrode.	6
II	BIO-POTENTIAL BASED INSTRUMENTATION Electrocardiography (ECG) – origin of cardiac action potential - ECG lead configuration –block diagram of ECG recording set up– Electroencephalography (EEG)	6
III	APPLICATIONS OF MEDICAL SCANNERS Medical imaging in nuclear imaging technique –computer tomography (CT) – principle – mathematical basis of image construction –block diagram of CT scanner	6
IV	APPLICATIONS OF MAGNETIC RESONANCE IMAGING MRI principle and instrumentation- ultrasonic imaging systems – construction of transducer – display modes – image intensifiers – angiography – applications	6
v	OPERATION THEATRE AND SAFETY Diathermy –electrosurgical diathermy– shortwave, microwave, ultrasonic diathermy – ventilators – servo-controlled systems– pocket type radiation alarm – thermo-luminescence dosimeter.	6
	Total	30

Self-study MRI, ECG

Textbooks

- 1. Leslie Cromwell B.B., 2015. *Biomedical Instrumentation and measurement*, New Age International Publications, NewDelhi.
- 2. John R. Cameron, James G. Skofronick., 1985, *Medical Physics M.N.S.*, Chand & Co, New Delhi.
- 3. Ohba R, 2006. *Magnetic resonance imaging*, John Wiley & Sons, New York
- 4. Pallas Areny R, Webster J G, 1999. *Operation theatre and safety*, John Wiley & Sons, New York.
- 5. Wayne Tomasi, 1998. Advanced Electronics communication System, (4th Edition), Prentice Hall of India, India.

Reference Books

- 1. Dennis Roody, Coolen. 1995. *Electrosurgical diathermy*. Prentice Hall of India, IV edition, New Jersey: Prentice Hall.
- 2. Salivahanan S , 2015, *Medical Devices and Circuits*, Tata McGraw-Hill Publishing Company Limited, New Delhi.
- 3. Anokh Singh, Chopra A K, 2013. *Principles of medical imaging*, S. Chand & Co Ltd, New Delhi.
- 4. Chitode J S, 2020. Digital imaging, Unicorn publications, Chennai.
- 5. Senior John, 2010. ECG, Pearson Education, India.

Web Resources

- 2. https://www.geeksforgeeks.org/Medical Devices and Circuits -tutorials/
- 3. https://www.polytechnichub.com/medical instruments/
- 4. http://nptel.iitm.ac.in/Digital imaging /
- 5. http://web.ewu.edu/
- 6. http://nptel.iitm.ac.in/

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	1	2	3	3	3	3	3	1	2
CO2	3	3	3	2	3	3	3	3	3	3	2	3
CO3	3	2	3	3	1	3	3	3	2	3	3	1
CO4	3	3	3	2	2	3	3	3	3	3	2	2
CO5	3	2	3	3	2	3	3	3	2	3	3	3
TOTAL	15	13	15	11	10	15	15	15	13	15	13	11
AVERAGE	3	2.6	3	2.2	2	3	3	3	2.6	3	2.6	2.2

SEMESTER III / V

SELF LEARNING COURSE SLC: PUBLIC SERVICE EXAMINATION: PHYSICS-I

Course Code	L	Т	Р	S	Credits	Inst.	Total	Marks		
Course Code					Creans	Hours	Hours	CIA	External	Total
PU233SL1/ PU235SL1	-	-	-	-	1	-	-	25	75	100

Pre- requisite:

Knowledge based on mechanics, wave propagation, optics, electrostatics and magnetostatics.

Learning Objectives:

- 1. To gain knowledge in the behaviour of light waves and understand how these phenomena contribute to the formation of images and optical instruments.
- 2. To learn the contemporary topics in optics and understand these technologies and their practical applications.

	Course Outcomes						
On the successful completion of the course, students will be able to:							
1.	remember and understand the fundamental principles and core concepts in mechanics, electrostatics, optics and magnetostatics.	K1& K2					
2.	apply the mathematical and analytical techniques to solve problems related to mechanics principles- optics- electro and magnetostatics.	К3					
3.	apply principles of geometrical optics to analyze the behavior of light rays in various optical systems- such as lenses- mirrors- and optical fibers.	K3					
4.	relate abstract concepts in physics and apply them to real- world phenomena- including understanding the principles behind various physical phenomena and their applications	K4					
5.	evaluate circuit problems involving series and parallel connections	K5					

K1- Remember: K2- Understand: K3 – Apply: K4- Analyse: K5- Evaluate: K6– Create

	nder; K2- Understand; K3 – Apply; K4- Analyse; K5- Evaluate; K6– Create
Units	Contents
	MECHANICS OF PARTICLES AND CONTINUOUS MEDIA
	Laws of motion-conservation of energy and momentum-applications to rotating
	frames-centripetal and Coriolis accelerations- Motion under a central force-
	Conservation of angular momentum-Kepler's laws-Fields and potentials-
	Gravitational field and potential due to spherical bodies-Gauss and Poisson
I	equations-gravitational self- energy-Two- body problem-Reduced mass-
1	Rutherford scattering- Centre of mass a laboratory reference frames. Elasticity-
	Hooke's law and elastic constants of isotropic solids and their inter- relation-
	Streamline (Laminar) flow-viscosity-Poiseuille's equation-Bernoulli's equation-
	Stokes' lawand applications. Michelson-Morley experiment and its implications-
	Lorentz transformations-length contraction-time dilation- the addition of
	relativistic velocities- aberration- and Doppler effect- mass- energy relation
	WAVES AND OPTICS
	Simple harmonic motio damped oscillation- forced oscillation and resonance-
·	Beats- Stationary waves in a string- Pulses and wave packets- Phase and group
	velocities- Reflection and Refraction from Huygens' principle. Laws of reflection
II	and refraction from Fermat's principle- Matrix method in paraxial optics- thin
	lens formula- nodal planes- system of two thin lenses- chromatic and
	spherical aberrations.
	Interference of Light- Young's experiment- Newton's rings- interference by thin
	films- Michelson interferometer- Multiple beam interference- and Fabry- Perot
	interferometer. Fraunhofer diffraction- single slit- double slit- diffraction

	grating- resolving power- Diffraction by a circular aperture and the Airy							
	pattern- Fresnel diffraction: half- period zones and zone plates- circular							
	aperture							
	MODERN OPTICS							
	Production and detection of linearly and circularly polarised light- Double							
	refraction- quarter wave plate- Optical activity- Principles of fibre optics-							
III	attenuation- Pulse dispersion in step index and parabolic index fibres- Material							
111	dispersion- single mode fibres- Lasers- Einstein A and B coefficients- Ruby							
	and He- Ne lasers- Characteristics of laser light- spatial and temporal coherence-							
	Focusing of laser beams- Three- level scheme for laser operation- Holography							
	and simple applications.							
	ELECTROSTATICS AND MAGNETOSTATICS							
	Laplace and Poisson equations in electrostatics and their applications- Energy of							
	a system of charges- multiple expansion of scalar potential- Method of images							
IV	and its applications- Potential and field due to a dipole- force and torque on a							
1.4	dipole in an external field- Dielectrics- polarization- Solutions to boundary-							
	value problems- conducting and dielectric spheres in a uniform electric field-							
	Magnetic shell- uniformly magnetized sphere- Ferro magnetic materials-							
	hysteresis- energy loss.							
	CURRENT ELECTRICITY							
	Kirchhoff's laws and their applications- Biot- Savart law- Ampere's law-							
V	Faraday's law- Lenz's law- Self- and mutual- inductances- Mean and r m s							
	values in AC circuits- DC and AC circuits with R- L- and C components-							
	Series and parallel resonances- Quality factor- Principle of transformer.							
Toythooks								

Textbooks

- 1. Palanisamy P K, 2012. *Engineering Physics*, (1st Edition), India: Scitech Publications (India) Pvt. Ltd.
- 2. Gupta A B, 2015. *Modern Physics*, (2nd Edition), Books and Allied (p) Ltd, Kolkatta.
- 3. Subrahmanyam Brijilal N, 2004. *A text book of optics*, (22nd Edition), S.Chand and Company Pvt. Ltd, New Delhi.

Reference Books

- 1. Arthur Beiser, 2006. *Concepts of Modern Physics*. (6th Edition), Tata McGraw Hill, s India.
- 2. Subrahmanyam Brijilal N, Avadhanulu M N, 2015. A text book of Optics. (25th Edition), S.Chand and Company Pvt. Ltd, Newdelhi.
- 3. David J Griffiths, 2004. *Introduction to Electrodynamics*. (3rd Edition), Prentice Hall of India Private Ltd.
- 4. Reitz, 1987. *Foundations of Electromagnetic Theory*, (3rd Edition), Narosa Publishing House, New Delhi.
- 5. Nayyar N K, 2009. Unique Quintessence of Physics (For M.Sc. Entrance Examinations (All Universities) & amp; other Competitive Examinations), Unique Publishers, New Delhi.

Web Resources

- 1. https://www.berkshire.com/learning-center/delta-pfacemask/https://www.youtube.com/watch?v=QrhxU47gtj4https://www.youtube.com/ watch?time_continue=318&v=D38BjgUdL5U&feature=emb_logo
- 2. https://www.youtube.com/watch?v=JrRrp5F-Qu4
- 3. https://www.validyne.com/blog/leak-test-using-pressure-transducers/
- 4. https://www.atoptics.co.uk/atoptics/blsky.htm
- 5. https://www.metoffice.gov.uk/weather/learn-about/weather/optical-effects

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4	PSO5	
CO1	3	3	2	3	3	2	3	3	3	3	3	2	
CO2	3	3	2	3	3	3	3	3	3	3	3	2	
CO3	3	3	2	3	3	2	3	3	3	3	3	2	
CO4	3	3	2	3	3	3	3	3	3	3	3	2	
CO5	3	3	2	3	3	3	3	3	3	3	3	2	
TOTAL	15	15	10	15	15	13	15	15	15	15	15	10	
AVERAGE	3	3	2	3	3	2.6	3	3	3	3	3	2	
			-	a .	-			-					

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

SEMESTER IV CORE COURSE IV: OPTICS AND SPECTROSCOPY

Course Code	т	т	Р	S	Credits	Inst Hound	Total		Marks					
Course Code	L	I	r	ð	Creans	Creans	Creans	Inst. Hours	Inst. Hours	Inst. Hours	Hours	CIA	External	Total
PU234CC1	5	1	1	I	5	5	75	25	75	100				

Pre-requisite:

Basic knowledge on wave and ray optics, spectroscopy.

Learning Objectives:

- 1. To provide an in-depth understanding of the basics of various phenomena in geometrical and wave optics and explain the behaviour of light in different mediums.
- 2. To comprehend the variations in the major phenomena interference, diffraction, and polarization and to use the understanding in day-to-day activities.

Course Outcomes

On the s	On the successful completion of the course, students will be able to:						
1	outline basic knowledge of methods of rectifying different defects in lenses, articulate technological applications of eyepieces.	K1					
2	understand the wave nature of light through working of interferometer.	K2					
3	apply the knowledge of nature of light through diffraction techniques and apply mathematical principles to analyse the optical instruments.	K3					
4	categorise basic formulation of polarization and appraise its usage in industries.	K4					
5	evaluate the principles of optics to various fields of IR, Raman and UV spectroscopy and understand their instrumentation and application in industries	K5					

K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyse; K5 - Evaluate

Units	Contents	No. of Hours
I	LENS AND PRISMS Lens maker's formula – Equivalent focal length of two thin lenses separated by a distance. Aberrations: Spherical aberration in a lens – Methods of minimizing Spherical aberration-condition for minimum spherical aberration – Chromatic aberration. Prism: Dispersion, deviation, Achromatic combination of Prisms – Dispersion without deviation –Deviation without dispersion – applications – Direct vision spectroscope.	15
ш	INTERFERENCE Division of wave front – Fresnel's biprism – fringes with white light – division of amplitude: interference in thin films due to (i) reflected light (ii) transmitted light – air wedge – Newton's rings. Michelson's interferometer – applications, (i) determination of the wavelength of a monochromatic source of light, (ii) determination of the wavelength and separation D_1 and D_2 lines of sodium light.	15
ш	DIFFRACTION Fresnel's assumptions – zone plate – action of zone plate for an incident spherical wave front – differences between a zone plate and a convex lens – Fresnel type of diffraction – diffraction pattern due to a straight edge– Fraunhofer type of diffraction – Fraunhofer diffraction at a single slit – plane diffraction grating– experiment to determine wavelengths.	15
IV	POLARISATION Polarizer and analyser – double refraction – optic axis, principal plane – Huygens's explanation of double refraction in uniaxial crystals – Polaroids and applications – Circularly and elliptically polarized light – quarter wave	15

	plate – half wave plate – Production and detection of circularly and elliptically polarized lights – Fresnel's explanation.	
v	SPECTROSCOPY Infra-red spectroscopy-Near infra-red and far infra-red –Properties –IR source- IR Detectors- IR spectrophotometer – applications -Scattering of light – Raman effect - Experimental study of Raman effect –applications – Ultraviolet and visible spectroscopy –properties – UV source – UV Detectors- Spectrographs for UV regions- Applications.	15
	Total	75

Self-study Rayleigh's criterion for resolution; Half wave plate; Plane diffraction grating

Textbooks

- 1. Subramaniam N, Brijlal. 2014. Optics, (25th Edition), S.Chand&Co, New Delhi.
- 2. Gupta S L, Kumar V, Sharma R.C.2017. *Elements of Spectroscopy*, (13th Edition), Pragati Prakashan, Meerut.
- 3. Aruldhas G, 2000. *Molecular Structure and Spectroscopy*, (2nd Edition), PHI Pvt Ltd, New Delhi.
- 4. Sasikumar P R, 2012. Photonics, PHI Pvt Ltd, New Delhi.
- 5. Rajagopal K, 2008. Engineering Physics, PHI Pvt Ltd, New Delhi.

Reference Books

- 1. Agarwal B.S. 2011. Optics, Kedernath Ramnath Publishers, Meerut.
- 2. Sathyaprakash. 1990. Optics, (7th Edition), Ratan Prakashan Mandhir, New Delhi.
- 3. Banwell C.N.2006.*Introduction to Molecular Spectroscopy*, (4th Edition), TMH Publishing Co, New Delhi.
- 4. AjoyGhatak. 2009. Optics, (4th Edition), PHI Pvt Ltd, New Delhi.
- 5. Singh, Agarwal, 2002. Optics and Atomic Physics, (9th Edition), PragatiPrakashan Meerut.
- 6. Halliday D, Resnick R, Walker J.2001. *Fundamentals of Physics*, (6th Edition), Willey, New York.
- 7. Jenkins A, Francis, White. 2011. Fundamentals of Optics, (4th Edition), McGraw Hill Inc., New Delhi.

Web Resources

- 1. https://science.nasa.gov/ems/
- 2. https://www.youtube.com/watch?v=tL3rNc1G0qQ&list=RDCMUCzwo7UlGkb-8Pr6svxWo-LA&start_radio=1&t=2472
- 3. https://science.nasa.gov/ems/
- 4. https://www.youtube.com/watch?v=tL3rNc1G0qQ&list=RDCMUCzwo7UlGkb-
- 5. https://imagine.gsfc.nasa.gov/educators/gammaraybursts/imagine/index.html

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMMESPECIFICOUTCOMES

	I KOOKAWIWIESI ECH ICOUICOWIES												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4	PSO5	
CO1	3	3	2	3	3	1	3	3	3	3	3	2	
CO2	3	3	2	3	3	1	3	3	3	3	3	2	
CO3	3	3	2	3	3	1	3	3	3	3	3	2	
CO4	3	3	2	3	3	1	3	3	3	3	3	2	
CO5	3	3	2	3	3	1	3	3	3	3	3	2	
TOTAL	15	15	10	15	15	5	15	15	15	15	15	10	
AVERAGE	3	3	2	3	3	1	3	3	3	3	3	2	

SEMESTER IV CORE LAB COURSE IV: GENERAL PHYSICS LAB IV

Course Code	т	т	р	C	Credita	Inst Hound	Total		Marks	
Course Code	L	T P S Credits Inst. Hours	mst. nours	Hours	CIA	External	Total			
PU234CP1	-	-	3	-	3	3	45	25	75	100

Pre-requisite:

Knowledge on basic Physics, Optics and Mathematics.

Learning Objectives:

- 1. To understand the basic concepts of electromagnetic radiation and their behavior in encounters different mediums, including the principles behind mirrors and lenses
- 2. To comprehend the principles of interference, diffraction, and polarization.

Course	Outcomes
--------	----------

On the s	successful completion of the course, students will be able to:	
1.	identify the dual nature of light, understanding it as both a wave and a particle.	K1
2.	understand and explore nonlinear optics, laser spectroscopy, interferometry, and laser-based measurements.	K2
3.	use the optical principles involved in the different medium including the principles behind mirrors and lenses.	К3
4.	devise light paths through lenses, grating and mirrors.	K4
5.	prioritize the applications problems related to laser physics and develop a prototype.	K5 & K6
171 D		

K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyse; K5 - Evaluate; K6 - Create

Contents (Any Eight experiments)

- 1. Determination of refractive index of prism using spectrometer.
- 2. Determination of refractive index of liquid using hollow prism and spectrometer
- 3. Determination of dispersive power of a prism.
- 4. Determination of radius of curvature of lens by forming Newton's rings.
- 5. Determination of thickness of a wire using air wedge.
- 6. Determination of resolving power of grating
- 7. Determination of refractive index using Laser.
- 8. Determination of wavelengths, particle size using Laser/Monochromatic source.
- 9. Determination of resolving power of telescope
- 10. Verification of Newton's formula for a lens separated by a distance.
- 11. Determination of refractive index of a given liquid by forming liquid lens
- 12. Determination of resolving power of Diffraction grating using Laser
- 13. Determination of thickness of wire using Laser.

Textbooks

- 1. Ouseph C, Rao U J, Vijayendran V, 2007. *Practical Physics and Electronics*, S. Viswanathan, Pvt., Ltd. Chennai.
- 2. Arora C L, 2001. B.Sc. Practical Physics, S. Chand Publishing, New Delhi.
- 3. Srinivasan M N, Balasubramanian S, Ranganathan R, 2013. A Textbook of Practical *Physics*, S. Chand Publishing, New Delhi.
- 4. Wood L, Sladjana, 2017. *General Physics Lab Manual*, Volume Two (3rd Edition) American Press, United States.
- 5. Harnam Singh, 2000.B.Sc. *Practical Physics*, S. Chand Publishing, New Delhi.

Reference Books

1. Shukla R K, 2007. *Practical Physics*. New Age International (P) Limited, Publishers. India.

- 2. Ware M J, Peatross J, 2015. *Physics of Light and Optics* (Black & White Brigham Young University, Department of Physics, United States.
- 3. James J F, 2014. An Introduction to Practical Laboratory Optics, Cambridge University Press, United Kingdom.
- 4. Meschede D, 2017. Optics, Light and Lasers: The Practical Approach to Modern Aspects of Photonics and Laser Physics, Wiley, Purcell Germany.
- 5. James JF, 2014. An Introduction to Practical Laboratory Optics, Cambridge University Press, United Kingdom.

Web Resources

- 1. https://youtu.be/oRch7irmLvo?si=GGBBqt6w9harEEVW
- 2. https://youtu.be/_whtX5uXzb4?si=SIUyPIJtoBjqGJq0
- 3. https://youtu.be/Su8TvWW-j0g?si=XUNsSeh9JiyZdEmX
- 4. https://youtu.be/0FxfmBLN31s?si=JHRiqmgOR16sGPof
- 5. https://youtu.be/br6LLJrqYtI?si=Yg1O9ZjxcYe5Knwd

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

In the reconciliance of recipies												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	2	3	3	2	3	3	3	3	3	2
CO2	3	3	2	3	3	3	3	3	3	3	3	2
CO3	3	3	2	3	3	2	3	3	3	3	3	2
CO4	3	3	2	3	3	3	3	3	3	3	3	2
CO5	3	3	2	3	3	3	3	3	3	3	3	2
TOTAL	15	15	10	15	15	13	15	15	15	15	15	10
AVERAGE	3	3	2	3	3	2.6	3	3	3	3	3	2
			2 (14	A N	1.	1 T					

3 – Strong, 2- Medium, 1- Low

SEMESTER IV

ELECTIVE COURSE IV: ALLIED PHYSICS FOR CHEMISTRY – II

Course Code	т	т	р	5	Credita	Inst Hound	Total		Marks	
Course Coue	Course Code L T P	3	Creans	mst. nours	Hours	CIA	External	Total		
PU234EC1	4	-	-	1	3	4	60	25	75	100

Pre-requisite:

Basic knowledge of physics principles, atoms, semiconductors.

Learning Objectives:

- 1. To obtain an all-encompassing comprehension of the basic ideas of Physics.
- 2. To analyse the fundamental ideas behind optics, electronics, relativity, and quantum physics.

	Course Outcomes							
On the successful completion of the course, students will be able to:								
1.	explain the notions of interference, diffraction and polarization using principles of superposition of waves.	K1						
2.	understand the basic foundation of different atom models and periodic classification of elements	K2						
3.	apply the basic concepts of relativity like inertial frames and get an overview of research projects of National and International importance.	К3						
4.	relate the properties of nuclei, nuclear forces, structure of atomic nucleus and nuclear models.	K4						
5.	defend the working of semiconductor devices like junction diode, Zener diode and practical devices.	K5						

K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyse; K5 - Evaluate

Unit	Contents	No. of Hours
I	OPTICS Interference – interference in thin films –colours of thin films – air wedge – determination of diameter of a thin wire by air wedge – diffraction normal incidence – experimental determination of wavelength using diffraction grating (no theory) – polarization – polarization by double refraction – Brewster's law – optical activity –Application in sugar industry	12
п	ATOMIC PHYSICS Atom models – Bohr atom model – mass number – atomic number – nucleons – vector atom model – various quantum numbers – Pauli's exclusion principle – electronic configuration – periodic classification of elements – Stark effect – Zeeman effect (elementary ideas only) – photo electric effect – Einstein's photoelectric equation	12
ш	NUCLEAR PHYSICS Nuclear models – liquid drop model - shell model – magic numbers – nuclear energy – mass defect – binding energy curve – Natural radioactivity – half life – mean life – nuclear fission and Fusion – comparison –energy released in fission– thermonuclear reactions	12
IV	NUCLEAR REACTORS Chain reaction – Controlled chain reaction – uncontrolled chain reaction – Atom bomb – nuclear reactor – Construction and Working – breeder reactor – types – Introduction to Department of atomic energy (DAE) – International atomic energy agency (IAEA)	12

SEMICONDUCTOR PHYSICS

P-N junction diode - Forward and reverse biasing - characteristic of diode -12 Zener diode - Characteristic of Zener diode - voltage regulator - USB cell phone charger – Introduction to e-vehicles and EV charging stations Total 60

Self-study Optical activity – Application in sugar industry

Textbooks

v

- 1. Murugesan R, 2005. Allied Physics, S. Chand & Co, New Delhi.
- 2. Thangaraj K, Jayaraman D, 2004. Allied Physics, Popular Book Depot, Chennai.
- 3. Gupta A B, 2015. *Modern Physics*, (2nd Edition), Kolkatta Books and Allied (p) Ltd.
- 4. Hugh D Young, Rogger A, Freedman, 2015. University Physics with Modern Physics, Pearson Publishers, Chennai.
- 5. David Halliday, Robert Resnick, Jearl Walker, 2013. Fundamentals of Physics, Wiley Publishers. India.

Reference Books

- 1. Brijlal N, Subramanyam, 2002. Textbook of Optics, S. Chand & Co, New Delhi.
- 2. Murugesan R, 2005. Modern Physics, S. Chand & Co, New Delhi.
- 3. Ubald Raj A, Jose Robin G, 2004. Basic Electronics, Indira Publications. Marthandam.
- 4. Thomas L Floyd, 2017. Digital Fundamentals, (11th Edition), Universal Book Stall. New Delhi.
- 5. Metha V K, 2004. Principles of electronics, (6th Edition), S.Chand and Company. New Delhi.

Web Resources

- 1. https://www.berkshire.com/learning-center/delta-pfacemask/https://www.youtube.com/watch?v=QrhxU47gtj4https://www.youtube.com/ watch?time continue=318&v=D38BjgUdL5U&feature=emb logo
- 2. https://www.youtube.com/watch?v=JrRrp5F-Ou4
- 3. https://www.validyne.com/blog/leak-test-using-pressure-transducers/
- 4. https://www.atoptics.co.uk/atoptics/blsky.htm
- 5. https://www.metoffice.gov.uk/weather/learn-about/weather/optical-effects

	AND PROGRAMME SPECIFIC OUTCOMES													
	PO	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4	PSO5		
CO1	3	3	1	1	1	1	2	3	2	2	3	1		
CO2	3	3	3	1	2	2	2	3	3	3	3	3		
CO3	3	3	2	3	3	3	3	3	3	3	2	3		
CO4	3	3	3	3	2	3	2	3	3	3	2	3		
CO5	3	3	3	2	3	3	3	3	3	3	3	3		
TOTAL	15	15	14	10	11	11	12	15	14	14	14	13		
AVERAGE	3	3	2.6	2	2.2	2.4	2.4	3	2.8	2.8	2.6	2.6		

MAPPING WITH PROGRAMME OUTCOMES

3–Strong, 2-Medium, 1-Low

SEMESTER IV ELECTIVE LAB COURSE II: ALLIED PHYSICS PRACTICAL FOR CHEMISTRY II

Course Code	т	т	р	C	Credita	Inst Hound	Total		Marks	
Course Code	L	I	r	3	Creans	Inst. nours	Hours	CIA	External	Total
PU234EP1	-	-	2	-	2	2	30	25	75	100

Prerequisite:

Basic Knowledge in physics experiments.

Learning Objectives:

- 1. To apply various Physics concepts to understand concepts of Light, electricity and magnetism and waves.
- **2.** To set up experimentation for verifying theories, to do error analysis and correlate results.

Course Outcomes

On the other	he successful completion of the course, students will be able to: 🔨 👘	
1	identify the nature of monochromatic light and its diffraction and	K1
1.	interference phenomenon.	N1
2.	understand the concept of frequency measurements.	K2
2	use the physical principle involved in the various instruments to perform	К3
5.	experiments.	КJ
4.	devise scientific method and examine it in practice.	K4
5.	defend logic theorems and design simple logic circuits.	K5 & K6

K1 - Remember; K2 – Understand; K3 - Apply; K4 – Analyse; K5- Evaluate; K6-Create

Contents

(Any Eight Experiments)

- 1. Radius of curvature of lens by forming Newton's rings
- 2. Thickness of a wire using air wedge
- 3. Verification of Newton's law of cooling
- 4. Specific heat capacity of liquid by cooling method
- 5. Determination of AC frequency using sonometer
- 6. Thermal conductivity of poor conductor using Lee's disc
- 7. Construction of AND, OR, NOT gates using diodes and transistor
- 8. Characteristics of Zener diode
- 9. Determination of g using compound pendulum.
- 10. Determination of refractive index of prism using spectrometer.
- 11. Construction of Zener/IC regulated power supply

Textbooks

- 1. Ubald Raj A, Jose Robin G, 2012. Allied Physics. Indira Publications, Marthandam.
- 2. Donald E Simanek, Derek K Senft, 2005. *Laboratory Manual for Introductory Physics*, John Wiley & Sons, United States.
- 3. David H Loyd, 2012. *Physics Laboratory Manual*, Cengage Learning publishers, Delhi.
- 4. David Halliday, Robert Resnick, Jearl Walker, 2013. *Fundamentals of Physics*, Wiley Publishers, India.
- 5. Hugh D Young, Rogger A. Freedman, 2015. *University Physics with Modern Physics*, Pearson Publishers, Chennai.

Reference Books

1. Jerry D Wilson, Cecilia A. Hernández-Hall, 2017. *Physics laboratory experiments*, Cengage Learning publishers, Delhi.

- 2. Squires G L, 2001. Practical Physics, Cambridge University Press. India
- 3. Savant C. J, 2014. *Experiments in Physics for Students of Science and Engineering*, Cengage Learning publishers, Delhi.
- 4. Douglas C Giancoli, 2018. *Physics for Scientists and Engineers with Modern Physics*, Pearson Publishers, Chennai.
- 5. Jerry D Wilson, Cecilia A Hernández-Hall, 2003. *Experimental Physics: Modern Methods*, Cengage Learning publishers, Delhi.

Web Resources

- 1. https://study.com/academy/lesson/newton-s-law-of-cooling
- 2. https://byjus.com/physics/zener-diode/
- 3. https://www.youtube.com/watch?v=zFRWbDpDvtE
- 4. https://www.youtube.com/watch?v=XuXUtGN928U
- 5. https://v1.nitj.ac.in/physics/Downloads/lee%20method7831.pdf

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

M D I KOOK ININE DI LEIFIE OUTCOMED												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	2	3	3	2	3	3	3	3	3	2
CO2	3	3	2	3	3	3	3	3	3	3	3	2
CO3	3	3	2	3	3	2	3	3	3	3	3	2
CO4	3	3	2	3	3	3	3	3	3	3	3	2
CO5	3	3	2	3	3	3	3	3	3	3	3	2
TOTAL	15	15	10	15	15	13	15	15	15	15	15	10
AVERAGE	3	3	2	3	3	2.6	3	3	3	3	3	2
			2	C 4	0	37.1		Τ				

3 – Strong, 2- Medium, 1- Low

SEMESTER III / IV

SKILL ENHANCEMENT COURSE SEC-III: FITNESS FOR WELLBEING

Course Code	L	Т	Р	S	Credits	Total Hours	Marks		
							CIA	External	Total
UG23CSE1	1	-	1	-	2	30	25	75	100

Pre-requisites: Basic understanding of health and wellness concepts

Learning Objectives

- 1. To understand the interconnectedness of physical, mental, and social aspects of wellbeing, and recognize the importance of physical fitness in achieving holistic health.
- 2. To develop proficiency in mindfulness techniques, yoga practices, nutritional awareness, and personal hygiene practices to promote overall wellness and healthy lifestyle.

Course Outcomes

On the	On the successful completion of the course, student will be able to:								
1	know physical, mental, and social aspects of health	K1							
2	understand holistic health and the role of physical fitness.	K2							
3	apply mindfulness and yoga for stress management and mental clarity.								
4	implement proper personal hygiene practices for cleanliness and disease prevention.	К3							
5	evaluate and implement right nutritional choices.	K5							

K1-Remember; K2-Understand; K3-Apply; K5-Evaluate

Unit	Contents	No. of Hours
	Understanding Health and Physical Fitness	6
	Health – definition- holistic concept of well-being encompassing physical,	v
Ι	mental, and social aspects.	
	Physical fitness and its components- muscular strength- flexibility, and body	
	composition.	
	Benefits of Physical Activity- its impact on health and well-being.	
	Techniques of Mindfulness	6
II	Mind – Mental frequency, analysis of thought, eradication of worries	
	Breathing Exercises – types and its importance	
	Mindfulness -pain management - techniques for practicing mindfulness -	
	mindfulness and daily physical activities.	
	Foundations of Fitness	6
III	Stretching techniques to improve flexibility.	
	Yoga-Definition, yoga poses (asanas) for beginners, Sun Salutations (Surya	
	Namaskar), Yoga Nidra – benefits of yoga nidra.	
	Nutrition and Wellness	6
IV	Role of nutrition in fitness - macronutrients, micronutrients - mindful eating	
	practices, balanced diet - consequences of overeating. Components of healthy	
	food. Food ethics.	
	Personal Hygiene Practices	6
V	Handwashing- techniques, timing, and importance, oral hygiene- brushing,	
	flossing, and dental care, bathing and showering- proper techniques and	
	frequency, hair care- washing, grooming, and maintaining cleanliness,	
	maintaining personal hygiene, dangers of excessive cosmetic use.	
	Total	30

Self-study

Balance diet and basic excercises

Textbook

Bojaxa A. Rosy and Virgin Nithya Veena. V. 2024. *Fitness for Wellbeing*. **Reference Books**

- 1. Arul Raja Selvan S. R, 2022. Yogasanam and Health Science. Self publisher.
- 2. Vision for Wisdom. 2016. *Value Education*. The World Community Service Centre Vethathiri Publications.
- 3. WCSC Vision for Wisdom. 2016. *Paper 1: Yoga and Empowerment*. Vazhga Valamudan Offset Printers Pvt Ltd 29, Nachiappa St, Erode.
- 4. Lachlan Sleigh. 2023. *Stronger Together the Family's Guide to Fitness and Wellbeing*. Self Publisher.
- 5. William P. Morgan, Stephen E. Goldston. 2013. *Exercise And Mental Health*. Taylor & Francis.

Web Resources

- 1. https://www.google.co.in/books/edition/Psychology_of_Health_and_Fitness/11YOAwAA BAJ?hl=en&gbpv=1&dq=fitness+for+wellbeing&printsec=frontcover
- 2. https://www.google.co.in/books/edition/The_Little_Book_of_Active_Wellbeing/aA6SzgE ACAAJ?hl=en
- 3. https://www.google.co.in/books/edition/Physical_Activity_and_Mental_Health/yu96DwA AQBAJ?hl=en&gbpv=1&dq=fitness+for+wellbeing&printsec=frontcover
- 4. https://www.google.co.in/books/edition/The_Complete_Manual_of_Fitness_and_Well/pL PAXPLIMv0C?hl=en&gbpv=1&bsq=fitness+for+wellbeing&dq=fitness+for+wellbeing& printsec=frontcover
- 5. https://www.google.co.in/books/edition/The_Wellness_Code/4QGZtwAACAAJ?hl=en

SEMESTER IV ENVIRONMENTAL STUDIES

-												
Course	т	т	р	G	Credita	Inst.	Total	Marks				
Code	L	1	r	3	Credits	Hours Hours		CIA	External	Total		
UG234EV1	2	-	-	-	2	2	30	25	75	100		

Pre-requisite: Interest to learn about nature and surrounding.

Learning Objectives

- 1.To know the different types of pollutions, causes and effects
- 2.To understand the importance of ecosystem, resources and waste management

Course Outcomes

On the	successful completion of the course, students will be able to:	
1.	know the different kinds of resources, pollution and ecosystems	K1
2.	understand the biodiversity and its constituents	K2
3.	use the methods to control pollution and, to conserve the resources and ecosystem	K3
4.	analyse the factors behind pollution, global warming and health effects for sustainable development	K4
5.	evaluate various water, disaster and waste management systems	K5

Units	Contents	No. of Hours
I	Nature of Environmental Studies Multidisciplinary nature of environmental studies- scope of environmental studies - environmental ethics-importance- types- natural resources - renewable and non-renewable resources – forest, land, water and energy resources.	6
п	Biodiversity and its Conservation Definition: genetic, species of biodiversity - biodiversity hot-spots in India - endangered and endemic species of India – Red Data Book - In-situ and Ex- situ conservation of biodiversity. Ecosystem- types - structure and function - food chain - food web- ecological pyramids- forest and pond ecosystems.	6
III	Environmental Pollution Pollution - causes, types and control measures of air, water, soil and noise pollution. Role of an individual in prevention of pollution. Solid waste management: Causes, effects and control measures of urban and industrial wastes. Disaster management– cyclone, flood, drought and earthquake.	6
IV	Environmental Management and Sustainable Development From unsustainable to sustainable development -Environmental Law and Policy – Objectives; The Water and Air Acts-The Environment Protection Act -Environmental Auditing-Environmental Impact Assessment-Life Cycle Assessment- Human Health Risk Assessment, Water conservation, rain water harvesting, watershed management.	6
V	 Social Issues and the Environment Population explosion-impact of population growth on environment and social environment. Women and Child Welfare, Role of information technology in environment and human health. Consumerism and waste products. Climate change - global warming, acid rain and ozone layer depletion. Field work: Address environmental concerns in the campus (or) Document environmental assets- river / forest / grassland / hill / mountain in 	6

the locality (or) Study a local polluted site-urban / rural / industrial / agricultural area.	
Total	30

Self-study Pollutants, Ecosystems and Resources

Textbook

Punitha A and Gladis Latha R, 2024. Fundamentals of Environmental Science. **Reference Books**

- 1. Agarwal, K.C., 2001. Environmental Biology, Nidi Publishers. Ltd. Bikaner.
- 2. Brunner R.C., 1989, Hazardous Waste Incineration, McGraw Hill Ltd.
- 3. Gorhani, E & Hepworth, M.T. 2001. *Environmental Encyclopedia*, Jaico Publ. House, Mumbai.
- 4. De A.K., 2018. Environmental Chemistry, Wiley Eastern Ltd.
- 5. Gleick, H.P. 1993. Water in crisis, Pacific Institute for Studies Oxford Univ. Press.

Web Resources

1.https://www.sciencenews.org/topic/environment

- 2.https://news.mongabay.com/2024/05/
- 3. https://www.sciencedaily.com/news/earth_climate/environmental_issues/
- 4.https://wildlife.org/rising-oryx-numbers-may-distress-new-mexico-ecosystem/
- 5. https://phys.org/news/2024-02-global-wild-megafauna-ecosystem-properties.html

SEMESTER III & IV LIFE SKILL TRAINING II: CATECHISM

Course Code	т	т	Р	S	Credits	Inst.	Total		Marks	S	
Course Code	L	I	r	3	Creans	Hours	Hours	CIA	External	Total	
UG234LC1	1		-	-	1	1	15	50	50	100	

Learning Objectives:

- 1. To develop human values through value education
- 2. To understand the importance of personal development to lead a moral life

Course Outcomes

On the successful completion of the course, student will be able to:						
1	know and understand the aim and importance of value education	K1,K2				
2	get rid of inferiority complex and act confidently in the society	K3				
3	live lovingly by facing loneliness and make decisions on their own	K3				
4	develop human dignity and able to stand bravely in adversity	K6				
5	learn unity in diversity and grow in a life of grace	K6				

K1 - Remember K2-Understand; K3-Apply; K6- Create

Units	Contents	No. of							
		Hours							
	Face Loneliness: Loneliness – Causes for Loneliness – Loneliness in Jesus								
Ι	Christ Life – Ways to Overcome Loneliness – Need and Importance	3							
	Bible Reference: Matthew: 6:5-6								
	Inferiority Complex: Inferiority Complex - Types - Ways to Get Rid of								
II	Inferiority Complex – Words of Eric Menthol – Balanced Emotion – Jesus and	3							
11	his Disciples.	5							
	Bible Reference: Luke 8:43-48								
	Decision Making: Importance of Decision Making – Different Steps – Search –								
	Think – Pray – Decide- Jesus and his Decisions								
Ш	Bible Reference: Mathew 7:7-8								
111	Independent: Freedom from Control – Different Types of Freedom - Jesus the								
	Liberator								
	Bible Reference: Mark 10:46-52								
	Human Dignity: Basic Needs – Factors that Degrade Human Dignity – How to								
	Develop Human Dignity.								
IV	Bible Reference: Luke 6:20-26								
1 V	Stand Bravely in Adversity: Views of Abraham Maslow – Jesus and his								
	Adversity.								
	Bible Reference: Luke 22:43								
Ċ	Unity in Diversity: Need for Unity – The Second Vatican Council on the								
	Mission of Christian Unity.								
V	Bible Reference: I Corinthians 1:10	3							
v	To Grow in a Life of Grace: Graceful Life – View of Holy Bible – Moses –								
	Amos – Paul – Graceful Life of Jesus								
	Bible Reference: Amos 5:4								
	TOTAL	15							

Textbooks

Valvukku Valikattuvom, Christian Life Committee, Kottar Diocese The Holy Bible

SEMESTER III & IV LIFE SKILL TRAINING II: MORAL

Course	Codo	т	т	р	C	Credita	Inst. Hours	Total Marks					
Course	Code	L	I	r	3	Creans	Inst. nours	Hours	CIA	External	Total		
UG234	4LM1	1	-	-	-	1	1	15	50	50	100		

Learning Objectives:

- 1. To cultivate human values through value education
- 2. To comprehend the importance of humane and morals to lead ethical and moral life.

Course Outcome

On	On the successful completion of the course, student will be able to:								
1	know the significance of life	K1							
2	understand the importance of self-care	K2							
3	realise the duty of youngsters in the society and live up to it	K3							
4	analyse how to achieve success in profession	K4							
5	develop mystical values by inculcating good thoughts	K5							

K1 - Remember; K2 - Understand; K3 – Apply; K4 - Analyse; K5 – Evaluate

Unit	Contents	No. of Hours
Ι	Edu Care: IntroductionPersonal Care-Temple of Mind-Emotional stability- Inner views- Internal and external Beauty- Life is a Celebration	3
II	Self-care: Self- discipline- Selfishness in doing good things- Adolescence stage- What am I? - Self-esteem- Self-Confidence- Respect for womanhood	3
III	Profession based Values: Time Management-Continuous effort- What next? –Present moment is yours, Hard work and Smart Work-Broad view- destruct your failures	3
IV	Mystical Values: Thoughts- Positive and negative thoughts- Origin of negative thoughts-Moralisation of needs- Elimination of obstacles	3
V	Society and you: Knowing Humanity-Thankfulness- love and happiness- Honesty- Heroism -Youth is gift of God-Youngsters in politics and social media utilization.	3
	TOTAL	15

Text Book

"Munaetrathin Mugavari", G. Chandran, Vaigarai Publisher.

SEMESTER IV/ VI

SELF LEARNING COURSE: PUBLIC SERVICE EXAMINATION: PHYSICS-II

Course Code	т	т	р	G	Credits	Inst.	Total	Marks			
Course Code	L	I	P	3	Creans	Hours	Hours	CIA	External	Total	
PU234SL1/ PU236SL1	•	-	-	-	1	-	-	25	75	100	

Pre-requisite:

Knowledge based on Quantum Mechanics, thermodynamics, atomic, molecular and nuclear physics.

Learning Objectives:

- 1. To provide a structured approach to understand both electromagnetic waves and quantum mechanics, covering fundamental concepts, mathematical frameworks, experimental evidence, and real-world applications.
- 2. To equip students with the knowledge, skills and abilities necessary to understand, analyze and design electronic systems based on solid-state devices, fostering their intellectual development.

Course Outcomes

On t	the successful completion of the course, students will be able to:	
1.	remember the principles of electromagnetic theory, including Maxwell's equations and their applications.	K1
2.	understand the key principles of quantum mechanics, including quantization, superposition, and wave-particle duality.	K2
3.	apply thermodynamic principles for solving problems related to energy, heat transfer, and the behavior of thermodynamic systems.	К3
4.	analyse atomic structure, quantum mechanical models, and atomic spectra.	K4
5.	evaluate the characteristics and operation of semiconductor devices, including voltage-current relationships, small-signal behavior, and determine the frequency response	К5
174		

K1 - Remember; K2 - Understand; K3 – Apply; K4 - Analyse; K5 - Evaluate

Units	Contents
I	ELECTROMAGNETIC WAVES AND BLACKBODY RADIATION Displacement current and Maxwell's equations- Wave equations in vacuum, Pointing theorem -Electromagnetic field tensor, covariance of Maxwell's equations- Wave equations in isotropic dielectrics, reflection and refraction at the boundary of two dielectrics- Fresnel's relations- Total internal reflection; Normal and anomalous dispersion-Rayleigh scattering; Black body radiation and Planck's radiation law, Stefan - Boltzmann law, Wien's displacement law and Rayleigh-
II	Jeans' law. QUANTUM MECHANICS Wave-particle duality- Schrodinger equation and expectation values; Uncertainty principle- Solutions of the one-dimensional Schrodinger equation for a free particle (Gaussian wave-packet), particle in a box, particle in a finite well, linear harmonic oscillator- Reflection and transmission by a step potential and by a rectangular barrier- Particle in a three-dimensional box, density of states, free electron theory of metals- Angular momentum- Hydrogen atom -Spin half particles, properties of Pauli spin matrices.
III	THERMODYNAMICS Laws of thermodynamics, reversible and irreversible processes, entropy-

Isothermal, adiabatic, isobaric, isochoric processes and entropy changes- Otto and Diesel engines- Gibbs' phase rule and chemical potential- Vander Waals equation of state of a real gas, critical constants- Maxwell-Boltzmann distribution of molecular velocities, transport phenomena, equipartition, and virial theorems-Dulong-Petit, Einstein, and Debye's theories of specific heat of solids- Maxwell relations and applications; Clausius- Clapeyron equation. ATOMIC AND MOLECULAR PHYSICS Stern-Gerlach experiment, electron spin, fine structure of hydrogen atom; L-S coupling, J-J coupling- Spectroscopic notation of atomic states- Zeeman effect: Frank Condon principle and applications- Elementary theory of rotational, IV vibrational and electronic spectra of diatomic molecules- Raman effect and molecular structure- Laser Raman spectroscopy; Importance of neutral hydrogen atom, molecular hydrogen and molecular hydrogen ion in astronomy-Fluorescence and Phosphorescence- Elementary theory and applications of NMR. SOLID STATE PHYSICS, DEVICES AND ELECTRONICS Crystalline and amorphous structure of matter- Different crystal systems, space groups- Methods of determination of crystal structure- X-ray diffraction, scanning, and transmission electron microcopies; Band theory of solids conductors, insulators and semiconductors- Thermal properties of solids, specific heat, Debye theory- Magnetism: para and ferromagnetism; Elements of v superconductivity, Meissner effect, Josephson junctions, and applications-Elementary ideas about high-temperature superconductivity. Intrinsic and extrinsic semiconductors; p-n-p and n-p-n transistors; Amplifiers and oscillators-Op-amps- Digital electronics-Boolean identities, DeMorgan's laws, logic gates, and truth tables; Simple logic circuits- Thermostats, solar cells- Fundamentals of microprocessors and digital computers.

Textbooks

- 1. Murugesan S., 2014. Modern Physics, S. Chand Publishing, New Delhi, India.
- 2. Nayyar N K, 2009. Unique Quintessence of Physics (For M.Sc. Entrance Examinations (All Universities) & amp; other Competitive Examinations) Unique Publishers, New Delhi.
- 3. Arthur Beiser, 2006. Concepts of Modern Physics. Tata Mc Graw Hill ,India.

Reference Books

- 1. Aruldhas, G. 2005. Quantum Mechanics. Prentice-Hall of India, New Delhi.
- 2. Donald. P. Leach, Albert Paul Malvino, 2002. *Digital Principles and Applications*. (5th Edition), Tata, Mc Graw Hill publishing company Ltd., New Delhi.
- 3. Aruldhas, G., Rajagopal, R. 2005. *Modern Physics*. Prentice Hall of India Pvt Limited, India.
- 4. Halliday D, Resnick R, Walker J, 2001. *Fundamentals of Physics*, (6th Edition), Willey, New York.
- 5. Jenkins A, Francis, White. 2011. *Fundamentals of Optics*, (4th Edition), McGraw Hill Inc., New Delhi.

Web Resources

- 1. https://science.nasa.gov/ems/
- 2. https://www.youtube.com/watch?v=tL3rNc1G0qQ&list=RDCMUCzwo7UlGkb-8Pr6svxWo-LA&start_radio=1&t=2472
- 3. https://science.nasa.gov/ems/

- 4. https://www.youtube.com/watch?v=tL3rNc1G0qQ&list=RDCMUCzwo7UlGkb-8Pr6svxWo-LA&start_radio=1&t=2472
- 5. https://imagine.gsfc.nasa.gov/educators/gammaraybursts/imagine/index.html

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	2	3	3	2	3	3	3	3	3	2
CO2	3	3	2	3	3	3	3	3	3	3	3	2
CO3	3	3	2	3	3	2	3	3	3	3	3	2
CO4	3	3	2	3	3	3	3	3	3	3	3	2
CO5	3	3	2	3	3	3	3	3	3	3	3	2
TOTAL	15	15	10	15	15	13	15	15	15	15	15	10
AVERAGE	3	3	2	3	3	2.6	3	3	3	3	3	2

3 – Strong, 2- Medium, 1- Low

	CORECOURSE V: ATOMIC PHYSICS AND LASERS												
	Course Code	L	Τ	P	S	Credits	Inst. Hours	Total		Marks			
								Hours	CIA	External	Total		
	PU235CC1	5	-	-		4	5	75	25	75	100		
Pre	-roquisito.												

						SEM	ES7	FER V					
С	OR	ECO	DUI	RSE	2 V:	ATO	MI(C PHYS	IC	S AN	D	LASERS	

Pre-requisite:

Students should understand the atomic models, quantum mechanics,

electromagnetic

waves, experimental techniques related to charge and mass measurements.

Learning Objectives:

- 1. To understand the relativistic model, vector atom model and practical applications of photoelectric cells
- 2. To get knowledge on the working principles of lasers and to analyze spectral line splitting

Course Outcomes

On th	ne successful completion of the course, students will be able to:	
1.	understand the different types of crystal imperfections and their effects on material properties	K1
2.	interpret the concepts of elastic and inelastic behavior of materials at an atomic level.	K2
3.	utilize non-linear optical (NLO) materials in designing optical communication and laser systems.	K3
4.	analyze the working principles of NLO materials, LEDs and LCDs for display applications	K3&K4
5.	assessthesuitabilityofvarioustestingtechniquesforevaluatingmaterial properties	K5

K1-Remember;K2-Understand;K3 -Apply;K4 -Analyze;K5 -Evaluate

Units	Contents	No. of Hours
Ι	THE ELECTRON AND POSITIVE RAYS: Introduction, e/m of electron by Dunnington's method –charge of electron by Millikan's oil drop method – properties of positive rays –e/m of positive rays by Thomson's parabola method (problems calculation of e/m ratio of positive rays)– mass spectrographs and uses–Bainbridge and Dempster's mass	15
	spectrographs	
ро <mark>п</mark>	ATOMIC STRUCTURE: Sommerfield's relativistic atom model – vector atom model –various quantum numbers – L-S and J-J coupling – Pauli's exclusion principle–magnetic dipole moment of an electron due to orbital and spin motion – Bohr magneton - Stern and Gerlach experiment – Lande 'g' factor.	15
ш	SPLITTING OF SPECTRAL LINES: Excitation, ionization and critical potentials – Davis and Goucher's method – optical spectra – spectral notation and selection rules – fine structure of sodium D-line – Zeeman effect – experimental arrangement - Larmor's theorem – anomalous Zeeman effect–Paschen Back effect - Stark effect (Qualitative only).	15

IV	LASERS: general principles of lasers – properties of lasers action – spontaneous and stimulated emission – population inversion – optical pumping – He-Ne laser (principle and working) – semiconductor laser – solid state laser: ruby laser, Nd: YAG laser –laser applications– holography Applications of LASER: application of laser in metrology – optical									
V	Applications of LASER: application of laser in metrology – optical communication – material processing: laser instrumentation of material processing, powder feeder, laser heating, laser welding, laser melting – medical application – Laser instrumentation for surgeries–laser in astronomy	15								
	Total	75								
Self Study	Self Study Semiconductor laser									

Textbooks

- 1. R. Murugeshan & Kiruthiga Sivaprasath .2016. *Modern Physics*,(18th Edition). S. Chand & Company, New Delhi. Vol.1
- 2. M. N. Avadhanulu & P. S. Hemne .2012. *An Introduction to Lasers Theory and Applications* (First Edition), S. Chand & Company, New Delhi.

Reference Books

- 1. Brij Lal & N. Subrahmanyam .2007. *Atomic and Nuclear Physics*. S. Chand & Company.
- 2. D. L. Sehgal, K. L. Chopra, & N. K. Sehgal .2013. *Modern Physics* (9th Edition). Sultan Chand & Sons.
- 3. B. B. Laud. 2021. *Lasers and Non-linear Optics* (Latest Edition). New Age International Publishers, New Delhi.
- 4. Beiser, A. 2003. *Concepts of Modern Physics*, Vol. 1, (6th Edition), McGraw Hill, New York.
- 5. Girish, K.M. 2023. *Lasers and its Applications*, Vol. 1, (1st Edition), Notion Press, Chennai.

Web Resources

- 1. <u>http://hyperphysics.phy-astr.gsu.edu/hbase/hframe.html</u>
- 2. <u>https://makingphysicsfun.files.wordpress.com/2015/01/photoelectric-effect.pptx</u>
- 3. <u>https://www.khanacademy.org/science/physics/quantum-physics/in-in-nuclei/v/types-of-decay</u>

4.https://www.khanacademy.org/science/in-in-class-12th-physics-india/nuclei

5. https://ocw.mit.edu/courses/8-421-atomic-and-optical-physics-i-spring-2014/ MAPPINGWITHPROGRAMMEOUTCOMES AND PROGRAMME SPECIFIC

	OUTCOMES												
		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4	PSO5
	CO1	3	3	3	3	2	3	2	3	3	3	3	3
Ń	CO2	3	3	3	3	3	3	3	2	3	3	3	3
	CO3	3	3	3	3	3	3	2	3	3	3	3	3
	CO4	3	3	3	3	2	2	2	3	3	3	3	3
	CO5	3	3	3	3	3	1	3	3	2	3	3	3
	TOTAL	15	15	15	15	13	12	12	14	14	15	15	15
	AVERAGE	3	3	3	3	2.6	2.4	2.4	2.8	2.8	3	3	3
					•								

^{3–}Strong,2-Medium,1-Low

SEMESTER V CORE COURSE VI: RELATIVITY AND QUANTUM MECHANICS

Course Code	L	Т	Р	S	Credits	Inst. Hours	Total			
							Hours	CIA	External	Total
PU235CC2	5	_	_	_	4	5	75	25	75	100

Pre-requisite:

Basic knowledge of physics principles, relativity and wave functions.

Learning Objectives:

- 1. To learn the importance of transformation equations and also to differentiate between special and general theory of relativity.
- 2. To interpret the wave theory of matter with various theoretical and experimental evidences.

	Course Outcomes	
Ont	the successful completion of the course, students will be able to:	
1.	gain knowledge in the concepts of relativity and quantum mechanics	K1
2.	understand the various theory of relativity, transformation relation, matter waves,	K2
	operators and schrodinger equations.	
3.	realize the wave nature of matter, use of operators the relativity theories and	K3
	Schrödinger equation to simple problems.	
4.	appreciate the importance of transformation equations, theory of relativity, wave	K4
	nature and operators in quantum mechanics.	
5.	derive schrodinger equation and transformation relations for the system.	K5
	K1 Romember: K2 Understand: K3 Apply: K4 Applyso: K5 Evaluate	

K1-Remember; K2-Understand; K3–Apply; K4-Analyse; K5– Evaluate

Units	Contents	No. of
		Hours
	SPECIAL THEORY OF RELATIVITY: Michelson-Morley experiment-frames of	
	reference – Galilean Relativity – postulates of special theory of relativity – Lorentz	
	transformation – consequences – time dilation–concept of simultaneity– Doppler effect	15
Ι	– length contraction-variationofmasswithvelocity-Einstein'smass-energyrelation-	
	Relativistic momentum-energy relation	
	TRANSFORMATIONRELATIONS: Transformation of velocity, mass, energy and	15
	momentum-four vector- Invariance under transformation-Lorentz transformation and	
II	velocity addition equations in terms of hyperbolic functions.	
	GENERAL THEORY OF RELATIVITY: Inertial and Gravitational mass-	
	Principle of equivalence–Experimental evidences for General theory of Relativity	
	PHOTONSANDMATTER WAVES: Difficulties of classical physics and origin of	
	quantum theory -black body radiation - Planck's law - Einstein's photoelectric	
Ш		15
	group velocity-Davisson and Germer's experiment -uncertainty principle -	
Y	consequences – illustration of Gamma ray microscope.	

IV	operator– observable – operators for position, linear Momentum, angular momentum components–commutator algebra–commutator between these operators –expectation values of position and momentum – Ehrenfest	15
	theorem. SOLVINGSCHRÖDINGEREQUATIONFORSIMPLEPROBLEMS:	
V		15
	Total 7	75
Sel	f-study De Broglie waves, uncertainty principle.	

Textbooks

- 1. PuriS.P.2013. Special Theory of Relativity, Pearson Education, New Delhi.
- 2. BeiserA.2003. Concepts of Modern Physics, (6th Edition), McGraw-Hill, Inc., New Delhi.

Reference Books

- 1. Murugeshan R., Kiruthiga Sivaprasath. 2014. *Modern Physics*, (17th Revised Edition,) S. Chand & Co, New Delhi.
- 2. Singh S.P, Bagde M.K.2000. Quantum Mechanics, S.Chand & Co.New Delhi.
- 3. Satyaprakash, SwatiSaluja. *Quantum mechanics*. Kedar Nath Ram Nath &Co.
- 4. PeterJ. Nolan.2014. Fundamentals of Modern Physics, (1stEdition), by Physics.
- 5. Mathews & Venkatesan, 2008. A Text Book of Quantum Mechanics, Tata McGraw Hill, New Delhi.

Web Resources

- 1. http://hyperphysics.phy-astr.gsu.edu/hbase/qapp.html
- 2. https://swayam.gov.in/nd2_arp19_ap83/preview
- 3. https://swayam.gov.in/nd1_noc20_ph05/preview
- 4. https://www.khanacademy.org/science/physics/special-relativity/minkowski spacetime/v/introduction-to-special-relativity-and-minkowski-spacetime-diagrams
- 5. https://phys.libretexts.org/Bookshelves/Nuclear_and_Particle_Physics/Introduction_to_Applied_Nu clear_Physics_(Cappellaro)/02%3A_Introduction_to_Quantum_Mechanics/2.05%3A_Operators_C ommutators_and_Uncertainty_Principle

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	2	1	2	3	1	1	3	3	3	3	2
CO2	3	2	1	2	3	1	1	3	3	3	3	2
CO3	3	2	1	2	3	1	1	3	3	3	3	2
CO4	3	2	1	2	3	1	1	3	3	3	3	2
CO5	3	2	1	2	3	1	1	3	3	3	3	2
TOTAL	15	10	5	10	15	5	5	15	15	15	15	10
AVERAGE	3	2	1	2	3	1	1	3	3	3	3	2

SEMESTER V CORE LAB COURSE V: GENERAL PHYSICS LAB V

							Total		Marks	
Course Code	L	Т	Р	S	Credits	Inst. Hours	Hours	CIA	External	Total
PU235CP1	-	•	3	•	2	3	45	25	75	100

Pre-requisite:

Knowledge on wave properties of light, applications of a Ballistic Galvanometer (B.G), thermal conductivity and heat flow in solids and propagation of sound waves.

Learning Objectives:

- 1. To understand and analyze the principles of optics, electromagnetism, and thermal physics through experimental techniques, including spectrometry, diffraction grating, and ballistic galvanometer measurements.
- 2. To develop hands-on skills in precision measurements and data analysis for determining optical properties, inductance, sound velocity, and thermal conductivity of materials, enhancing experimental and analytical capabilities in physics.

On the	successful completion of the course, students will be able to:	
1.	recall fundamental principles of optics, diffraction, interference and thermal conductivity.	K1&K2
2.	apply experimental methods to determine optical parameters, measure inductance.	K3
3.	analyze experimental data to determine dispersive power, mutual inductance, and material properties.	K4
4.	assess and interpret experimental results to verify theoretical concepts and improve measurement accuracy in optical, electrical, and thermal systems.	K5
5.	develop prototypes using physics concepts.	K6

Course Outcomes

K1–Remember; K2–Understand; K3–Apply; K4–Analyse; K5–Evaluate; K6–Create

Contents (Any Six Experiments)

- 1. Spectrometer: Diffraction grating-Normal incidence. Wavelength of Mercury spectral lines.
- 2. Spectrometer: Diffraction grating-Minimum deviation.
- 3. Spectrometer: Hartmann's Interpolation.
- 4. Spectrometer: Oblique incidence
- 5. Spectrometer: Dispersive power of plane diffraction grating.
- 6. Brewster's law- polarization
- 7. Figure of Merit using B.G -Charge Sensitivity
- 8. Comparison of Mutual Inductance using B.G
- 9. Absolute Determination of Mutual Inductance using B.G
- 10. Thickness of a thin film using Bi-prism
- 11. Kundt's tube–Velocity of sound, Adiabatic Young's modulus of the material of the rod.
- 12. Forbe's method– Thermal conductivity of a metal rod.

Text Books:

- 1. Chauhan S. P., C. L. Arora, 2021. B.Sc. Practical Physics. S. Chand Publishing, New Delhi, India.
- 2. Singh R. K., 2019. Practical Physics: A Laboratory Manual. Pearson Education, New Delhi, India.

Reference Books:

- 1. Shukla R.P., Anchal Srivastava, 2016. Experimental Physics: Principles and Methods, New Age International, New Delhi, India.
- 2. Arthur Beiser, 2003. Concepts of Modern Physics, McGraw-Hill, NewYork, United States.
- 3. Eugene Hecht, 2017. Optics, Pearson, Harlow, United Kingdom.
- 4. David Halliday, Robert Resnick, Jearl Walker, 2013. Fundamentals of Physics, Wiley, Hoboken, United States.
- 5. Francis A., Harvey E.White, 2001. Fundamentals of Optics, McGraw-Hill, New York, United States.

Web Resources:

- 1. https://ocw.mit.edu/courses/physics/
- 2. https://nptel.ac.in/courses/115/101/115101005/
- 3. http://hyperphysics.phy-astr.gsu.edu/
- 4. https://phet.colorado.edu/en/simulations/category/physics
- 5. https://www.khanacademy.org/science/physics/light-waves

MAPPING WITH PROGRAMMEOUTCOMES AND **PROGRAMME SPECIFIC OUTCOMES**

CO1 3		i ROGRAMME SI ECHTE OUTCOMES												
CO2 3		PO1	l PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4	PSO5	
CO3 3	CO1	3	3	3	3	3	3	3	3	3	3	3	3	
CO4 3														
CO5 3 3 2 2 2 2 2 2 2 TOTAL 15 15 14 14 14 14 14 14 14 VERAGE 3 3 2.8 2.8 2.8 2.8 2.8 2.8 2.8 3- Strong,2-Medium,1-Low	CO3	3	3	3	3	3	3	3	3	3	3	3	3	
TOTAL 15 15 14	CO4	3	3	3	3	3	3	3	3	3	3	3	3	
AVERAGE 3 3 2.8 <td>CO5</td> <td>3</td> <td>3</td> <td>2</td> <td>2</td> <td>2</td> <td>2</td> <td>2</td> <td>2</td> <td>2</td> <td>3</td> <td>3</td> <td>2</td>	CO5	3	3	2	2	2	2	2	2	2	3	3	2	
3– Strong,2-Medium,1-Low	TOTAL	15	15	14	14	14	14	14	14	14	15	15	14	
	AVERAGE	3	3	2.8	2.8	2.8	2.8	2.8	2.8	2.8	3	3	2.8	
	ACRE	55												

С	ourse Code	e L T P S Credits Inst. Total <u>Marks</u>										
							Hours	Hours	CIA	External	Total	
F	PU235CP2	-	-	2	-	2	2	30	25	75	100	
Prerequisite:												
Knowledge on basic concepts of ICs, Transistors, Multivibrators and Op-amps												
L	earning Obj	ectiv	es:									
1. To understand the role of different components in generating pulses and stable												
signals.												
 To observe the frequency generation and stability of the oscillator circuits. 												
Course Outcomes												
On	the successf	ul co	mple	etion o	of th	e course, stu	idents wi	ill able to):		-	
1.	recall the ba	isic co	once	pts of	tran	sistors, multi	vibrators	and			K1&	
	Operational	ampl	ifier	s.							K2	
	design and	d an	alyz	e tra	nsist	tor-based o	scillators,	includ	ing Col	pitt's and		
2.	Hartley osci	llator	rs, an	d eva	luate	e their freque	ncy	-	Y		K3	
	stability.							15				
3.	construct	and	tes	at as	tabl	e, monosta	ble, an	d bista	ble		K3	
	multivibrate	orsusi	ngIC	2555ti	mers							
4.	verify De M	lorgai	n's tł	neorer	n an	d implement	NOR gat	te as a			K3	
	universal ga	te usi	ing d	igital	ICs.							
5.	design and i	mple	men	t half a	adde	rs, full adder	s, half su	btractors	,		K4	
	and full sub	tracto	ors us	sing ba	asic	logic gates.) í					

SEMESTER V CORE LAB COURSE VI: GENERAL PHYSICS LAB VI

K1–Remember; K2–Understand; K3-Apply; K4-Analyze

	Contents (Any Six Experiments)	
1.	Colpitt's oscillator using transistor	
2.	Hartley oscillator using transistor	
3.	Astable multivibrator using IC555	
4.	Verification of De Morgan's theorem using ICs-NOT, OR, AND	
5.	NOR as universal building block	
6.	Half adder / Full adder using basic logic gate ICs	
7.	Monostable Multivibrator using IC555	
8.	Encoder using IC or Equivalent circuit	
9.	Half subtractor /Full subtractor using basic logic gate ICs	

- 10. Bistable multivibrator using transistor
- 11. FET-characteristics.
- 12. FET–amplifier(common drain)

Text Books

- 1. Gayakwad, RamakantA.2000.*Op-Amps and Linear Integrated Circuits*. Pearson Education, New Delhi, India.
- Boylestad, Robert L.,and Louis Nashelsky.2017. *Electronic Devices and Circuit Theory*. Pearson Education, New Delhi, India.
 Reference Books
- 1. Bell, DavidA. 2015. *Electronic Devices and Circuits*. Oxford University Press, New Delhi, India.
- 2. Mano, M. Morris, and Michael D. Ciletti.2018. *Digital Design*. Pearson Education, New Delhi, India.

- 3. Jain, R.P.2010. Modern Digital Electronics. Mc Graw Hill Education, NewDelhi, India.
- 4. Millman, Jacob, and Christos C.Halkias.2010. Electronic Devices and Circuits. McGraw Hill Education, New Delhi, India.
- 5. Louis Nashelsky.2015. Electronic Devices. Pearson Education, New Delhi, India. Web Resources:
 - 1. https://www.allaboutcircuits.com/
 - 2. https://www.electronics-tutorials.ws/
 - 3. https://www.khanacademy.org/science/electrical-engineering
 - 4. https://www.allaboutcircuits.com/
 - 5. https://circuitdigest.com/

		7			
	_		\sim	\checkmark	
. (٦	Y		
NIT		J			

M	APPIN	GWĽ	ГHPR	OGR	AMN	IEOUI	COMES AND				
	PROGRAMME SPECIFIC OUTCOMES										

Г				U				0001	00111			
	P 01	PO2	PO3	PO4		PO6		PSO1	PSO2			
CO1	3	3	3	3	3	3	3	3	3	3	3	3
CO2	3	3	3	3	3	3	3	3	3	3	3	3
CO3	2	3	3	3	3	3	3	_3	> 3	3	3	3
CO4	3	3	3	3	3	3	3	C 3	3	3	3	3
CO5	3	3	2	2	2	3	2	2	2	3	3	2
TOTAL	14	15	14	14	14	15	14	14	14	15	15	14
AVERAGE	2.8	3	2.8	2.8	2.8	3	2.8	2.8	2.8	3	3	2.8
	2055											

3– Strong,2-Medium,1-Low

SEMESTER V DISCIPLINE SPECIFIC ELECTIVE I: a) ENERGY PHYSICS

Course Code	L	Τ	P	S	Credits	Inst. Hours	Total		Marks	
							Hours	CIA	External	Total
PU235DE1	•	4	•	•	3	4	60	25	75	100

Pre-requisite:

Students should know the different energy sources and their principles **Learning Objectives:**

- 1. To get the understanding of the conventional and non-conventional energy sources, their conservation and storage systems.
- 2. To realize the significance of energy consumption as a measure of prosperity.

Course Outcomes

On the successful completion of the course, student will be able to:

	the successful completion of the course, student will be usie tor	
1.	explain the importance of energy consumption and assess the availability, advantages, and limitations of conventional and non-conventional energy sources.	K1
2.	describe the fundamentals of different energy sources, and applications such as solar cookers, water heaters, and solar cells.	K2
3.	examine the principles of energy conversion, identify components of Energy Conversion Systems(ECS), and explore the potential of different energies.	K3
4.	describe the significance of different energy sources and energy storage systems.	K4
5.	classify different energy sources, explain energy conversion technologies, and understand the processes involved.	K5

K1-Remember; K2-Understand; K3 -Apply; K4 -Analyze; K5–Evaluate

Units	Contents	No. of
		Hours
	INTRODUCTION TO ENERGY SOURCES: Energy consumption as a	
	measure of prosperity - world energy future - energy sources and their	
Ι	availability - conventional energy sources - non-conventional and renewable	12
	energy sources – comparison – merits and demerits.	
	SOLAR ENERGY: Solar energy Introduction – solar constant – solar radiation	
	at the Earth's surface – solar radiation geometry – Solar radiation measurements	
	- solar radiation data -solar energy storage and storage systems - solar pond -	
II	solar cooker - solar water heater - solar greenhouse -types of greenhouses -	12
	solar cells –Schematic diagram for small, medium and major solar plants(1	
	kW,2kW, 10kW).	
\sim	WIND ENERGY: Introduction –nature of the wind – basic principle of wind	
	energy conversion – wind energy data and energy estimation – basic components	
III	of Wind Energy Conversion Systems(WECS)-advantages and disadvantages of	12
	WECS-applications-tidal energy	
	BIOMASS ENERGY: Introduction – classification – biomass conversion	
IV	technologies -photosynthesis - fermentation - biogas generation -classification of	
	biogas plants-anaerobic digestion for biogas- wood gasification-advantages &	
	disadvantages.	

	ENERGY STORAGE: Importance of energy storage- batteries - lead acid battery	
V	-nickel-cadmium battery - fuel cells - types of fuel cells-advantages and	12
	disadvantages of fuel cells- Applications of fuel cells- hydrogen storage.	

Self study	Advantages and disadvantages of fuel cells- Applications of Fuel Cells
------------	--

Textbooks:

- 1. Rai, G.D. 2009. Non-Conventional Sources of Energy (Fourth Edition) Published by Khanna Publishers, New Delhi.
- 2. Sukhstme, S.P.Nayak, J.K.2008. Solar Energy, Principles of Thermal Collection and Storage, (Third Edition)) Published by McGraw Hill (India).

Reference Books

- 1. JohnTwidell.TonyWeir.2005.Renewable Energy Resources (Second Edition) Published by Taylor & Francis.
- 2. Abbasi S.A. Nasema Abbasi.2008.Renewable Energy sources and their environmental impact, Published by PHI Learning Pvt. Ltd,
- 3. Agarwal, M. P.1982.SolarEnergy, Published by S. Chand & Co. Ltd., New Delhi.
- 4. Jain,H.C.1986.Non-Conventional Sources of Energy, , Published by Sterling Publishers (India) Private Limited.
- 5. Sri Niwas Singh, Prabhakar Tiwari, 2021. Fundamentals and Innovations in Solar Energy, , Published by Springer publications, New York

Web Resources

- 1. https://www.energysage.com/about-clean-energy/solar/
- 2. https://forumias.com/blog/status-of-wind-energy-in-india-explained-pointwise/
- 3. https://naturalenergyhub.com/renewable-energy/biomass-types-methods-converting-energy-advantages-disadvantages/
- 4. https://youtu.be/40ztd8uoU9Q
- 5. https://youtu.be/bPwvS5V5RW4

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3
CO1	3	\smile_2	3	3	2	3	2	2	3	2	2
CO2	2	2	3	3	3	2	2	2	3	2	2
CO3	3	3	3	3	3	2	2	3	3	2	2
CO4	3	2	3	3	2	2	2	2	3	2	2
CO5	3	2	2	3	3	2	2	2	3	2	2
TOTAL	14	11	14	15	13	11	10	10	15	10	10
AVERAGE	2.8	2.2	2.8	3	2.6	2.2	2	2	3	2	2

^{3–} Strong,2-Medium,1-Low

SEMESTER V DISCIPLINE SPECIFIC ELECTIVE I: b) MATHEMATICAL PHYSICS

Course Code	т	Ŧ	р	G	Credita	Inst. Hours	Total	Marks			
Course Code	L	I	r	Э	Creans	Inst. nours	Hours	CIA	External	Total	
PU235DE2	-	4	I	•	3	4	60	25	75	100	

Pre-requisite:

To understand higher mathematical concepts which are applied to solve problems in Physics and similar situations.

Learning Objectives:

- 1. This course covers essential mathematical concepts such as matrices, vector calculus, fourier series and partial differential equations.
- 2. It helps students to develop problem-solving skills and apply mathematical techniques to engineering and scientific problems.

Course Outcomes

On the successful completion of the course, students will be able to: remember the definitions and properties of matrices, eigenvalues, and **K1 & K2** 1. eigenvectors. understand mathematical concepts and develop a strong foundation in K2 & K4 matrices, vector calculus, fourier series and partial differential 2. equations. and **K3 & K**5 compute and interpret vector differentiation, integration, fundamental theorems in real-world applications by applying vector 3. calculus apply mathematical principles to analyse and solve physics-related K4 & K6 4. problems. evaluate the accuracy of fourier series approximations for different types K5 & K6 5. of functions and design innovative approaches to solving partial differential equations based on specific constraints.

K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate; K6– Create

Units	Contents	No. of Hours
I	MATRICES: Types of matrices – symmetric, Hermitian, unitary and orthogonal matrices– characteristic equation of a matrix –Determinants of 2x2 and 3x3 Matrices-Eigen values and Eigen vectors of a matrix – Cayley-Hamilton theorem – inverse of matrix by Cayley-Hamilton theorem –diagonalization of 2x2 real symmetric matrices.	12
n	VECTOR CALCULUS: vector differentiation – directional derivatives – definitions & Physical significance of gradient, divergence, curl – Laplace operators–Divergence and Curl in Cartesian Coordinates – line, surface and volume integrals – statement, proof and simple problems for Gauss's divergence theorem, Stoke's theorem, Green's theorem.	12
III	ORTHOGONAL CURVILINEAR COORDINATES : Polar Coordinates in 2D- Applications of Cylindrical Coordinates-tangent basis vectors – unit vectors in cylindrical and spherical coordinate systems –gradient of a scalar –divergence and curl of a vector	12

IV	FOURIER SERIES: Basic Properties of Fourier Series-Fourier Transform of Exponential Functions-periodic functions – Dirichlet's conditions – general Fourier series – even and odd functions and their Fourier expansions – Fourier cosine and sine – half range series – change of length of interval. Fourier analysis of half wave/full wave rectifier wave forms.	12
V	APPLICATIONS OF PARTIAL DIFFERENTIAL EQUATIONS (PDE): PDE for transverse vibrations in elastic strings (one dimensional wave equation) –one dimensional heat flow equation – solutions to these PDE's by method of separation of variables – problems based on boundary conditions and initial conditions.	12
	Total	60

Self-study	Matrices-Types of Matrices
	Orthogonal Curvilinger Coordinat

Orthogonal Curvilinear Coordinates- Gradient of a Scalar Function

Textbooks:

- 1. Chattopadhyay P K, 2013. *Mathematical Physics*, (2nd edition), New Age International Publishers, New Delhi, India.
- 2. Dass HK & Rama Verma, 2014. *Mathematical Physics*, (7thEdition), S. Chand & Company Pvt Ltd, New Delhi.

Reference Books:

- 1. Jain J.C, 2009. Vector space & Matrices, Narosa Publishing House Pvt Ltd, New Delhi.
- 2. Rajput B.S, 2008. *Mathematical Physics*, (20th Edition), Pragati Prakashan, Chennai.
- 3. Arfken, G.B, Weber H.J, Harris F.E, 2013. *Mathematical Methods for Physicists*, (7th Edition), Elsevier, USA.
- 4. Balakrishnan V, 2020. *Mathematical Physics Applications and Problems*, Springer, Ane Books Pvt Ltd.India.
- 5. Satya Prakash, 2005. *Mathematical Physics*, (4th Edition), S. Chand & Sons Company Pvt Ltd,New Delhi.

Web Resources

- 1. https://math.libretexts.org/Bookshelves/Linear_Algebra/A_First_Course_in_Linear_Algebra_(Kuttler)/07%3A_Spectral_Theory/7.01%3A_Eigenvalues_and_Eigenvectors_of_a_Matrix
- 2. https://www.geeksforgeeks.org/vector-calculus/
- 3. https://sites.engineering.ucsb.edu/~baronp/ChE230A/ortho-curvilinear-coords.pdf
- 4. http://ndl.ethernet.edu.et/bitstream/123456789/55096/1/Tsuneo%20Arakawa.pdf
- 5. https://cayley.academic.csusb.edu/content/notes/transform_notes.pdf

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3
CO1	3	2	3	3	2	3	2	2	3	2	2
CO2	3	2	3	3	3	2	2	2	3	2	2
CO3	3	2	3	3	3	2	2	2	3	2	2
CO4	3	2	3	3	2	2	2	2	3	2	2
CO5	3	2	3	3	3	2	2	2	3	2	2
TOTAL	15	10	15	15	13	11	10	10	15	10	10
AVERAGE	3	2	3	3	2.6	2.2	2	2	3	2	2

3 – Strong, 2- Medium, 1-Low

SEMESTER V DISCIPLINE SPECIFIC ELECTIVE I:c) ELECTRICITY, MAGNETISM AND ELECTROMAGNETISM

Course Code	L	Т	Р	S	Credits	Inst. Hours	Total	Marks CIA External		
							Hours	CIA External		Total
PU235DE3	4	-	•	•	3	4	60	25	75	100

Pre-requisite:

Students should know the fundamentals of electricity and magnetism and to know about the communication by electromagnetic waves.

Learning Objectives:

- 1. To classify materials based on their electrical and magnetic properties and to analyse the working principles of electrical gadgets.
- 2. To understand the behaviour of DC, AC and transient currents.

Course Outcomes

On tl	On the successful completion of the course, student will be able to:								
1.	recall and define key concepts in Electromagnetic Theory	K1							
2.	understand the fundamentals of electrostatics and capacitors	K2							
3.	apply current electricity concepts in practical scenarios	K3							
4.	analyze magnetism and magnetic material properties	K4							
5.	evaluate different physical quantities used to explain magnetic properties of	K5							
	materials								

K1-Remember ; K2-Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate

Units	Contents	No. of
		Hours
Ι	CAPACITORS AND THERMO ELECTRICITY: Capacitor- principle - capacitance of a parallel plate capacitor (with and without dielectric slab) - effect of dielectric - Carey Foster bridge - temperature coefficient of resistance - Seebeck effect - Laws of thermo emf - Peltier effect-Thomson effect-Thermoelectric diagrams and their uses- thermodynamics of thermocouple.	12
П	MAGNETIC EFFECT OF CURRENT: Biot and Savart's law- Magnetic induction due to circular coil-force on a current element by magnetic field-force between two infinitely long conductors-torque on- A current loop in a field-moving coil galvanometer-damping correction- Ampere's circuital law-differential form-divergence of magnetic field- Magnetic induction due to toroid	12

III	MAGNETISM AND ELECTROMAGNETIC INDUCTION: Magnetic induction B – Magnetization M –relation between B, H and M – magnetic susceptibility- magnetic permeability- experiment to draw B-H curve - energy loss due to hysteresis - importance of hysteresis curve – Faraday and Lenz laws - self inductance-coefficient of self inductance of solenoid- Anderson's method-mutual inductance- coefficient of mutual Inductance between two coaxial solenoids-coefficient of coupling.	12
IV	TRANSIENT AND ALTERNATING CURRENTS: Growth and Decay of current in a circuit containing resistance and inductance -growth and decay of charge in a circuit containing resistance and capacitor - growth and decay of charge in an LCR circuit (expression for charge only)-peak, average and rms values of ac- LCR series-parallel circuits -resonance condition-Q factor-power factor.	12
V	MAXWELL'SEQUATIONSANDELECTROMAGNETIC WAVES: Maxwell's equations in vacuum, material media - physical significance of Maxwell's equations - displacement current - plane electromagnetic waves in free space-velocity of light-Poynting vector- Electromagnetic waves in a linear homogeneous media-refractive index.	12
	Total	60

Self Study Self-inductance, Mutual Inductance

Text Books

- 1. Murugeshan, R, 2006, Electricity and Magnetism (eighth edition), S. Chand and Co, New Delhi.
- 2. Sehgal D.L., Chopra K.L, Sehgal N.K., 2020, Electricity and Magnetism (seventh edition), Sultan Chand and Sons, New Delhi.

Reference Books

- 1. Brijlal, Subramanyan. N and Jivan Seshan, 2005, Mechanics and Electrodynamics (fifth edition), Eurasia Publishing House (Pvt.) Ltd., New Delhi.
- 2. David J. Griffiths, 1997, Introduction to Electrodynamics (second Edition), Prentice Hall of India Pvt. Ltd., New Delhi.
- 3. Halliday. D, Resnik. RandWalker. J, 200, -Fundamentals of Physics (sixth Edition), Wiley, New York.
- 4. Narayanamurthy. M and Nagarathnam.N, 2010, Electricity and Magnetism (fourth Edition), National Publishing Co., Meerut.
- 5. Tewari, K. K, 2007, Electricity and Magnetism (Third edition), S.Chand and Co, New Delhi. Web Resources
- 1. https://web.njit.edu/~vitaly/121/notes121.pdf
- 2. https://www.lehman.edu/faculty/dgaranin/Introductory Physics/PHY167-5-Electromagnetism.pdf
- 3. https://rajeshvcet.home.blog/wp-content/uploads/2021/11/purcell-e.m.-morin-d.j.-electricity-andmagnetism-2013-cambridge-university-press-libgen.lc .pdf
- 4. https://ocw.mit.edu/courses/8-022-physics-ii-electricity-and-magnetism-fall-2004/pages/lecturenotes/
- 5. https://ocw.mit.edu/courses/8-022-physics-ii-electricity-and-magnetism-fall-2004/pages/assignments/

CO1 3 2 3 3 2 3 2 2 3 2 2 CO2 3 2 3 3 3 2 2 2 3 2 2 CO3 3 2 3 3 3 2 2 2 3 2 2 CO4 3 2 3 3 2 2 2 3 2 2 CO5 3 2 3 3 3 2 2 2 3 2	CO1 3 2 3 3 2 3 2 2 3 2 CO2 3 2 3 3 3 2 2 2 3 2 CO3 3 2 3 3 3 2 2 2 3 2 CO4 3 2 3 3 2 2 2 3 2 CO4 3 2 3 3 2 2 2 3 2 CO5 3 2 3 3 3 2 2 2 3 2 TOTAL 15 10 15 15 13 11 10 10 15 10 AVERAGE 3 2 3 3 2.6 2.2 2 3 2 Jo Strong,2-Medium,1-Low Strong with the structure Structure Structure Structure Strucure							CIFIC (
CO2 3 2 3 3 3 2 2 2 3 2 CO3 3 2 3 3 3 2 2 2 3 2 CO4 3 2 3 3 2 2 2 3 2 1 CO4 3 2 3 3 2 2 2 2 3 2 1 CO5 3 2 3 3 3 2 2 2 3 2 1 TOTAL 15 10 15 13 11 10 10 15 10 AVERAGE 3 2 3 3 2.6 2.2 2 3 2 3 2 3- Strong,2-Medium,1-Low 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4	CO2 3 2 3 3 3 2 2 2 3 2 CO3 3 2 3 3 3 2 2 2 3 2 CO4 3 2 3 3 2 2 2 3 2 CO4 3 2 3 3 2 2 2 2 3 2 CO5 3 2 3 3 3 2 2 2 3 2 TOTAL 15 10 15 13 11 10 10 15 10 AVERAGE 3 2 3 2 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 3 2 2 3 2 3 3 2 2 3 <th< th=""><th>PSC</th><th>-</th><th>501</th><th>PO8</th><th>PO7</th><th>PO6</th><th>PO5</th><th>PO4</th><th>PO3</th><th>PO2</th><th>PO1</th><th></th></th<>	PSC	-	501	PO8	PO7	PO6	PO5	PO4	PO3	PO2	PO1	
CO3 3 2 3 3 3 2 2 2 3 2 CO4 3 2 3 3 2 2 2 2 3 2 2 CO5 3 2 3 3 3 2 2 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 3 2 2 3 3 2 3 2 3 2 3 3 2 2 3 2 3 2 3 3 2 2 3 2 3 2 3 2 3 2 3 3 2 3 2 3 2 3 2 3 3 3 2.6 2.2 2 3 2 3 3 3 3 2.6 3 2 3 3 3 3 3	CO3 3 2 3 3 2 2 2 3 2 CO4 3 2 3 3 2 2 2 2 3 2 CO5 3 2 3 3 2 2 2 2 3 2 CO5 3 2 3 3 3 2 2 2 3 2 TOTAL 15 10 15 13 11 10 10 15 10 AVERAGE 3 2 3 3 2.6 2.2 2 3 2 3 3 2.6 2.2 2 3 2 3 3 2.6 2.2 2 3 2 3 3 3 2.6 2.2 2 3 2 3 3 3 2.6 2.2 2 3 2 3	2											
CO4 3 2 3 3 2 2 2 2 3 2 1 CO5 3 2 3 3 3 2 2 2 3 2 1 TOTAL 15 10 15 13 11 10 10 15 10 AVERAGE 3 2 3 3 2.6 2.2 2 2 3 2 3- Strong,2-Medium,1-Low 3- 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 3 2.6 2.2 2 3 2 3 3 3 3 2.6 10 10 10	CO4 3 2 3 3 2 2 2 2 3 2 CO5 3 2 3 3 2 2 2 3 2 TOTAL 15 10 15 15 13 11 10 10 15 10 AVERAGE 3 2 3 3 2.6 2.2 2 3 2 3 2 3 3 2.6 2.2 2 3 2 AVERAGE 3 2 3 3 2.6 2.2 2 2 3 2 3- Strong,2-Medium,1-Low 3 3 3 4 </td <td>2</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>3</td> <td></td> <td></td> <td></td>	2								3			
CO5 3 2 3 3 3 2 2 2 3 2 TOTAL 15 10 15 13 11 10 10 15 10 AVERAGE 3 2 3 3 2.6 2.2 2 3 2 AVERAGE 3 2 3 3 2.6 2.2 2 2 3 2 3- Strong,2-Medium,1-Low 3-	CO5 3 2 3 3 3 2 2 2 3 2 TOTAL 15 10 15 13 11 10 10 15 10 AVERAGE 3 2 3 3 2.6 2.2 2 2 3 2 AVERAGE 3 2 3 3 2.6 2.2 2 2 3 2 3- Strong,2-Medium,1-Low 3 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 3 2.6 2.2 2 3 2 3 3 3 2.6 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 <td>2</td> <td></td>	2											
TOTAL 15 10 15 13 11 10 10 15 10 AVERAGE 3 2 3 3 2.6 2.2 2 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 3 3 2 3 <td>TOTAL 15 10 15 13 11 10 10 15 10 AVERAGE 3 2 3 3 2.6 2.2 2 2 3 2 3- Strong,2-Medium,1-Low</td> <td>2</td> <td></td>	TOTAL 15 10 15 13 11 10 10 15 10 AVERAGE 3 2 3 3 2.6 2.2 2 2 3 2 3- Strong,2-Medium,1-Low	2											
TOTAL 15 10 15 15 13 11 10 10 15 10 AVERAGE 3 2 3 2 3 2 3 2 2 2 2 3 2 3 2 3 3 3 3	TOTAL 15 10 15 13 11 10 10 15 10 AVERAGE 3 2 3 3 2.6 2.2 2 2 3 2 3	2	2	3	2	2	2	3	3	3	2	3	CO5
AVERAGE 3 2 3 3 2.6 2.2 2 2 3 2 3-Strong,2-Medium,1-Low	AVERAGE 3 2 3 3 2.6 2.2 2 2 3 2	1	10	15	10	10	11	13	15	15	10	15	TOTAL
3-Strong,2-Medium,1-Low	3-Strong,2-Medium,1-Low	2	2	3	2	2	2.2	2.6	3	3	2	3	AVERAGE
Magges contration on one	Maggeon Mannon Manne				the second	55).	.0						
our cross countriculutions	Maggeoninternation						M						
MA CROSS COLLING HUNC	Maggeon Marine						J'	all and the	~				
or cross countrille	Maggescontratile												
on choss contribution	Maggeon High								A				
out cross coult	H CROSS COLLE								/	² C ³			
out crossics	stranges and the second s										~		
JLY CROSS	JL CROSS												
STY CROE	Stronger Stronger										$\mathcal{O}^{\mathbf{v}}$	ć	
off Cr	JIX CH										9,	5	
											$\mathcal{O}^{\mathbf{y}}$	55	0
											<u>Or</u>	555	R
											<u>_</u>	55	A CRC
											0+	55	TY OR
											<u>_</u>	55	ot t CRS
											<u></u>	555	ot t OR
											<u>_</u>	55	ottor
											<u>Or</u>	555	ottor
											94	55	ottor
												555	ottor
											90+	555	ottor

MAPPINGWITHPROGRAMMEOUTCOMES AND PROGRAMME SDECIFIC OUTCOMES

SEMESTER V DISCIPLINE SPECIFIC ELECTIVE II: a) MATERIAL SCIENCE

Cours	e Code	L	Т	Р	S	Credits	Inst. Hours	Total		Marks	
								Hours	CIA	External	Total
PU23	5DE4	4	•	-		3	4	60	25	75	100

Pre-requisite:

Students should know basic Physics (mechanics, thermodynamics, electricity, and optics), Chemistry (atomic structure, bonding, and crystals), and Mathematics (algebra and calculus).

Learning Objectives:

- 1. To learn imperfections in crystals, deformation of materials and testing of materials.
- 2. To get knowledge on behavior of a material, under the action of light and their applications.

Course Outcomes

On	the successful completion of the course, student will be able to:	
1.	understand the different types of crystal imperfections and their effects on material	K1&K2
	properties	
2.	interpret the concepts of elastic and inelastic behavior of materials at an atomic level.	K2
3.	utilize non-linear optical (NLO) materials in designing optical communication and	K3
	laser systems.	
4.	analyze the working principles of NLO materials, LEDs, and LCDs for display	K3&K4
	applications	
5.	assess the suitability of various testing techniques for evaluating material properties.	K5
	K1-Remember: K2-Understand: K3 - Apply: K4 - Analyze: K5 - Evaluate: K6-Create	

Units	Contents	No. of Hours
I	Crystal Imperfections: introduction – point defects: vacancies, interstitials, impurities, electronic defects – equilibrium concentration of point imperfections –application of point defects – line defects: edge dislocation, screw dislocation – surface defects: extrinsic defects – intrinsic defects: grain boundaries, tilt &twist boundaries, twin boundaries, stacking faults– volume defects– effect of imperfections.	12
п	Material Deformation: introduction–elastic behavior of materials –atomic model of elastic behavior–modulus as a parameter in design–rubber like elasticity–inelastic behavior of materials– relaxation process– viscoelastic behavior of materials– spring-Dashpot models of viscoelastic behavior of materials	12
ш	Permanent Deformation and Strengthening Methods of Materials: introduction –plastic deformation: tensile stress-strain curve – plastic deformation by slip – creep: mechanism of creep – creep resistant materials–strengthening methods: strain hardening, grain refinement–solid solution strengthening– precipitation strengthening.	12

IV	Optical Materials: introduction – optical absorption in metals, semiconductors and insulators – NLO materials and their applications – display devices and display materials: fluorescence and phosphorescence–light emitting diodes– liquid crystal displays.	
v	Mechanical Testing: destructive testing: tensile test, compression test, hardness test – nondestructive testing (NDT): radiographic methods, ultrasonic methods – thermal methods of NDT: thermography– equipment used for NDT: metallurgical Microscope	
	Total	60

Self study	NLO materials and their applications
Sell Study	INLO materiais and men applications

Textbooks

- 1. Rajendran, V, 2017. Materials science, Second Edition, McGraw Hill publications, Uttar Pradesh.
- 2. Palanisamy P.K., 2015. Materials Science, Second Edition, SciTech Publications (India) Pvt. Ltd, Chennai.

Reference Books

- 1. William D. Callister Jr., 2007. Material Science & Engineering An Introduction, Eighth Edition, John Wiley & Sons, Inc., New Jersey.
- 2. Bolton W., 2001. Engineering materials technology, Third Edition, Butterworth & Heinemann,. Oxford.
- 3. Donald R. Askel, Pradeep P. Phule, 2002. The Science and Engineering of Materials, Fifth Edition, Nelson Engineering.
- 4. William F. Smith, 1993. Second edition, Structure and Properties of Engineering Alloys, Mc-Graw-Hill Inc., U.S.A.
- 5. Narula G.K., Narula K.S., Gupta, V.K., 1988. Materials Science, Tata McGraw-Hill, U.S.A. Web Resources
- 1. https://onlinecourses.nptel.ac.in/noc20_mm02/preview
- 2. https://nptel.ac.in/courses/112104229
- 3. https://archive.nptel.ac.in/courses/113/105/113105081
- 4. https://nptel.ac.in/courses/113/105/113105025/
- 5. https://eng.libretexts.org/Bookshelves/Materials_Science/Supplemental_Modules_(Materials_Science)/Electronic_Properties/Lattice_Vibrations

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

					0								
		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4	PSO5
(CO1	3	3	3	3	2	3	2	3	3	3	3	3
	CO2	3	3	3	3	3	3	3	2	3	3	3	3
, '	CO3	3	3	3	3	3	3	2	3	3	3	3	3
	CO4	3	3	3	3	2	2	2	3	3	3	3	3
	CO5	3	3	3	3	3	1	3	3	2	3	3	3
	TOTAL	15	15	15	15	13	12	12	14	14	15	15	15
	AVERAGE	3	3	3	3	2.6	2.4	2.4	2.8	2.8	3	3	3

3–Strong, 2-Medium, 1-Low

_	DI							\mathbf{L}				
	Course Code	L	Т	Р	S	Credits	Inst.	Total		Marks		
							Hours	Hours	CIA	External	Total	
	PU235DE5	4	-			3	4	75	25	75	100	
_												

SEMESTER V DISCIPLINE SPECIFIC ELECTIVE II: b) NANOSCIENCE

Pre-requisite:

Basic physics, chemistry, material science, quantum mechanics, mathematics, spectroscopy, electron microscopy, and fundamentals of nanotechnology.

Learning Objectives:

1. To provide the basic knowledge about nanoscience and nanotechnology and to learn the structures and properties of nanomaterials.

2. To acquire the knowledge about synthesis methods and characterization techniques and its applications.

Course Outcomes

0	the successful completion of the course, students will be able to:	
Un t		
1.	recall fundamental concepts of nanoscience, including nanostructures, size effects and quantum confinement.	K1
2.	explore the mechanical, optical, electrical, magnetic, and electrochemical properties of nanomaterials.	К2
3.	apply various synthesis methods such as sol-gel, CVD, sputtering, and electrochemical deposition.	К3
4.	analyze the structural, morphological, and optical properties of nanomaterials using characterization techniques	K4
5.	evaluate the applications of nanomaterials in real-world technological advancements.	К5

K1-Remember; K2-Understand; K3-Apply; K4-Analyse; K5-Evaluate

Units	Contents	No. of						
		Hours						
Ι	INTRODUCTIONTO NANOSCIENCE: History of Nanotechnology- Nanoscale-nature and nanostructures - Nanostructures:0D,1D, 2D-surface to volume ratio-size effect - excitons - quantum confinement-Semiconductor Nanoparticles - nanocomposites (non-polymer based) - carbon nanostructures - fullerene - SWCNT and MWCNT and its properties.	12						
П	PROPERTIESOFNANOMATERIALS: Introduction - mechanical behavior - elastic properties - hardness and strength - ductility and toughness - superplastic behavior - optical properties - surface plasmon resonance - electricalproperties- dielectric materials and properties- magnetic properties- superparamagnetism-electrochemical properties.							
Ш	PREPARATIONOF NANOMATERIALS: Top-down and bottom-up approaches-electrochemical method- chemical vapour deposition-sputtering-ballmilling-sol-gel Process-Electro deposition-Spray Pyrolysis-Solvo thermal Synthesis - Sonochemical Synthesis.	12						

IV	Pow anal micr phot	ARACTERIZATIONTECHNIQUES: der XRD method: determination of structure and grain size ysis - scanning electron microscopy - transmission electror coscopy - atomic force microscopy - UV-visible and columinescence spectroscopy - X-ray photoelectron Spectroscopy S) - EDS analysis.	12			
V	Med batte base	PLICATIONSOFNANOMATERIALS: licine: Targeted drug delivery- energy: fuel cells -rechargeable eries - supercapacitors - photovoltaics. Sensors: nano sensors ed on optical and physical properties- electrochemical sensors— o biosensors - GMR-nanorobots.				
		Tota	60			
Self Stu	Self Study Rechargeable batteries, Supercapacitors Photovoltaics.					

Textbooks:

- 1. Kulkarni, Sulabha K. 2015. *Nanotechnology: Principles and Practices*.3rded. Springer.
- 2. Sr.Gerardin Jayam, Sonia.S, 2019. Nanophysics, Holy Cross College (Autonomous), Nagercoil.

Reference Books:

1. K.K. Chattopadhyayand A.N. Banerjee, (2012), Introduction to Nanoscience and Nanotechnology, PHI Learning Pvt. Ltd.,

2. M.A. Shah, Tokeer Ahmad (2010), Principles of Nanoscience and Nanotechnology, Narosa Publishing House Pvt Ltd.

 Richard Booker and Earl Boysen, (2005) Nanotechnology, Wiley Publishing Inc.US

4. J.H. Fendler (2007) Nanoparticles and nanostructured films; Preparation,

Characterization and Applications, John Wiley & Son.

5. B.S. Murty, et al (2012) Textbook of Nanoscience and Nanotechnology, Universities Press.

Web Resources:

- 1. www.its.caltec.edu/feyman/plenty.html
- 2. http://www.library.ualberta.ca/subject/nanoscience/guide/index.cfm
- 3. http://www.understandingnano.com
- 4. http://www.nano.gov

5. http://www.nanotechnology.com

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	2.6	2.4	2.6	3	3	3	3	3
CO2	3	3	3	3	2.6	2.4	2.6	2	3	3	3	3
CO3	3	3	3	3	2.6	2.4	2.6	3	3	3	3	3
CO4	3	3	3	3	2.6	2.4	2.6	3	3	3	3	3
CO5	3	3	3	3	2.6	2.4	2.6	3	2	3	3	3
TOTAL	15	15	15	15	13	12	13	14	14	15	15	15
AVERAGE	3	3	3	3	2.6	2.4	2.6	2.8	2.8	3	3	3

3–Strong, 2-Medium, 1-Low

SEMESTER V DISCIPLINE SPECIFIC ELECTIVE II: c) MEDICAL INSTRUMENTATION

Course Code	L	Τ	P	S	Credits	Inst. Hours	Total		Marks	
							Hours	CIA	External	Total
PU235DE6	4	-	-	-	3	4	60	25	75	100

Pre-requisite:

Students should have enough knowledge in Basic Physics, electricity and magnetism Learning Objectives:

- 1. To provide background of the physics principles
- 2. To apply physics principles in medical instrumentation technologies through theoretical& practical learning.

Course Outcomes

On the su	uccessful completion of the course, student will be able to:	
1	define the basic concepts of medical instrumentation and components of the man-instrument system.	K1
-		
2	understand the challenges involved in measuring physiological parameters in living systems.	K2
3	interpret various bioelectric potentials (ECG, EEG, and EMG) and their physiological sources.	K3
4	compare different imaging techniques and diagnostics radiology	K4
5	assess image quality factors affecting diagnostic accuracy, ethical and legalconsiderations in the development and use of medical instrumentation.	K5&K6

K1-Remember;K2-Understand;K3 - Apply;K4 - Analyze;K5-Evaluate;K6-Create

Units	Contents	No. of Hours
Ι	Biometrics: Introduction to man-instrument system and its components –problems encountered in measuring living systems – transducers– force, motion, pressure transducers. Audiometry: mechanism of hearing – air and bone conduction – threshold of hearing –audiometer – masking in audiometry – pure tone and speech audiometer– evoked response audiometry– Hearing aids	12
П	Bioelectric Potentials and Electrodes: biomedical signals– sources of bioelectric potentials– resting, action and propagation of Bioelectric potentials–bio-potential electrodes–skin surface, needle	12

	electrodes.	
	Biomedical Recorders: electro-conduction system of heart -electro cardiogram	
	(ECG) - Einthoven's triangle - electro encephalogram(EEG)-brainwaves-EEG	
	instrumentation-recording	
	Of evoked potentials -electro-myogram (EMG)-pulseoximeter.	
	Diagnostic Radiology: radiography- primary radiological image - contrast agents	12
III	filters- beam restrictor, grid -image quality- Radioisotopes-gamma camera-positror	
	emission tomography–	
	Disposal of radioactive waste.	
IV	Ultra sound Imaging: ultrasound transducer-ultrasound imaging- Doppler	12
	ultrasound – ultrasound image quality & bio-effects.	
	Magnetic Resonance Imaging: Proton and external magnetic field-	12
V	precession-radio frequency and resonance-MRI signal-relaxation time - MRI	
	instrumentation – imaging sequences – bio-safety	

Self- study MRI instrumentation-imaging sequences –bio-safety

Textbook

1. Leslie Cromwell, Fred Weibell, Erich Pfieffer , 2002, Biomedical Instrumentation& Measurements Prentice Hall of India, New Delhi.

2. R.S.Khandpur, 2003, Hand book of BiomedicalInstrumentation2ndEdn.TataMcGrawHill, New Delhi.

Reference Books

- 1. JohnWebster, 2004, Bioinstrumentation John Wiley and Sons, Singapore.
- 2. John Enderle, Susan Blanchard, Joseph Bronzino, 2005, Introduction to Biomedical Engineering, 2nd ed. Elsevier, San Deigo
- 3. William Hendee, Geoffrey Ibbott, Eric Hendee, 2005, Radiation therapy Physics 3rd edition. Wiley- Liss, New Jersey

Web Resources

- 1. https://www.youtube.com/watch?v=GJ5Bn-tEkdw
- 2. https://www.youtube.com/watch?v=TBGrY_IfK8w
- 3. https://www.youtube.com/watch?v=OqNDFF1RsMU
- 4. https://www.youtube.com/watch?v=DEsTkXTtOLA

5. https://www.msajce-edu.in/academics/ece/ICTTools/EC8073-ICT.pdf

MAPPINGWITHPROGRAMMEOUTCOMES AND PROGRAMME SPECIFIC

				0	UTCO	MES						
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	2	3	3	2	3	2	3	2	2	2	2
CO2	3	2	3	3	3	2	2	3	2	2	2	2
CO3	3	2	3	3	3	2	2	3	2	2	2	2
CO4	3	2	3	3	2	2	2	3	2	2	2	2
CO5	3	2	3	3	3	2	2	3	2	2	2	2
TOTAL	15	10	15	15	13	11	10	15	10	10	10	10
AVERAGE	3	2	3	3	2.6	2.2	2	3	2	2	2	2

^{3–}Strong,2-Medium,1-Low

SEMESTER V CORE RESEARCH PROJECT

Course	L	Т	Р	S	Credits	Inst.	Total	Marks				
Code						Hours	Hours					
PU235RP1	-	-	5	-	4	5	75	Internal	External	Total		
								25	75	100		

Pre-requisite:

Identification of Research Problem.

Learning Objectives:

- 1. To empower students to design experiments, analyze data, and interpret results effectively.
- 2. To cultivate skills for identifying subject-related problems in the local community.

Course Outcomes

	Upon completion of this course, the students will be able to:										
1.	Identify emerging areas of physics research.										
2.	Analyze research problems and develop appropriate data collection tools.										
3.	Apply scientific skills to contribute to industries and agencies related to science.										
4.	connect research findings with existing scientific literature and communicate results effectively.	K4									

K1-Remember; K2-Understand; K3–Apply; K4-Analyze

Guidelines

All the students must undertake project work at the final year (V semester) as a group (4 to 5 students per group).

Distribution of marks for project 25:75 Internal Components

Internal Viva= 15marks

Regularity and Systematic work= 10marks

External Components

Dissertation	=30marks
Innovation	=15marks
Presentation and Viva	=30marks
*Mode of presentation by PowerP	Point

Project frame work

- 1. The Project format should be in:
 - Font–Times New Roman
 - Heading–Fontsize14(Bold)– Uppercase
 - Subheadings–Fontsize12(Bold)—Lowercase; should be numbered.(Eg: Introduction 1; Subheading 1.1; 1.2)
 - ◆ Text, the content of the dissertation—Font size– 12 (Normal).
 - ✤ Linespace-1.5
 - ✤ Margin-2"ontheleftand1"ontheright,Gutter-0.5.
 - ◆ Page Numbering Bottom middle alignment; excluding initial pages and reference
 - Total number ofpagesMinimum30, Maximum40 (Excluding initial pages and reference).
 - The Tables and Figures should be included subsequently after referring them in the text of the Report.

II. Project Report must be completed within the stipulated time.

III. Submission of Project Report:

- One soft copy (PDF format in CD)
- Three hard copies (soft binding) duly signed and endorsed by the Supervisor and the Head.

The Project Report will have three main parts:

I. Initial Pages-in the following sequence

- i). Title Page
- ii). Certificate from the Supervisor
- iii). Declaration by the candidate endorsed by the Supervisor and HOD AAGER
- iv). Acknowledgement (within one page-signed by the candidate).
- v). Table of Contents
- vi). List of abbreviations

II. Main body of the dissertation

- Introduction and Objectives i)
- ii) Methodology
- iii) Results
- iv) Discussion

Summary

v) References

The guidelines for reference Journal Article: with Single Author

Waldron, S2008, "Generalized Welchboundequality sequences are tight frames",

IEEE Transactions on Information Theory, vol.49, no. 9, pp. 2307 – 2309.

Journal Article: with Two Authors

Conley, TG & Galeson, DW 1998, "Nativity and wealth in mid-nineteenth century cities", Journal of Economic History, vol. 58, no.2, pp. 468-493.

Journal Article: with more than two Authors

Alishahi, K, Marvasti, F, Aref, VA & Pad, P 2009, "Bounds on the sum capacity of synchronous binary CDMA channels", Journal of Chemical Education, vol. 55, no. 8, pp.3577-3593.

Books

Holt, DH 1997, Management Principles and Practices, Prentice-Hall, Sydney. CentreforResearch, MSUniversity-Ph.D.RevisedGuidelinesPage 39/41 **E-book**

Aghion,

P&Durlauf,S(eds.)2005,HandbookofEconomicGrowth,Elsevier,Amsterdam.Available from: Elsevier books. [4 November 2004].

SEMESTER V

PRO	PROFESSIONAL COMPETENCY SKILL I- CAREER SKILLS											
Course Code	L	Т	Р	S	Credits	Inst. Hours	Total	Marks				
							Hours	CIA	External	Total		
UG235PS1	1	1	•	•	2	2	30	25	75	100		

Pre-requisite: A foundational understanding of the basic communication skills and computer literacy.

Learning Objectives

- 1. To develop effective communication and interpersonal skills to enhance workplace interactions and teamwork
- 2. To build job readiness skills such as resume writing, interview techniques, and professional ethics

Course Outcomes

On the	successful completion of the course, students will be able to:	
1	outline key career skills such as communication, teamwork, and problem- solving	K1
2	explain the importance of professional ethics, workplace etiquette, and time management	K2
3	demonstrate effective resume writing, interview techniques, and job application strategies	К3
4	assess different workplace scenarios to determine appropriate communication and conflict resolution strategies	K4
5	develop a personal career plan with clear goals, skills assessment, and strategies for professional growth	K5

K1- Remember; K2- Understand; K3- Apply; K4- Analyse; K5- Evaluate

Units	Contents							
Ι	Linguistic Skills Vocabulary, Resume Writing, Report Writing, Technical Writing, Agenda Preparation, Preparing Minutes, E-mail.	6						
II	Employability Skills Social Etiquette, Telephone Etiquette, Interview Skills, Types of Interviews, Mock Interview, Group Discussion.	6						
ш	Digital Capabilities Digital Learning, Digital Participation, ICT Proficiency, Creative Production, Digital Identity, Digital well-being	6						
IV	Body Language Defining Body Language, Scope and Relevance, Proxemics, Oculesics, Haptics, Kinesics, Paralanguage, Chronemics, Chromatics and Olfactics	6						
V	Coping Mechanisms Goal Setting, Emotional Intelligence, Team Management, Stress Management, Time Management, Leadership Skills, Problem solving Skills, Decision Making.	6						
	Total	30						

Self-study Basic language skills and communication skills

Textbook

Virgin Nithya Veena. V & Jemi A.R. 2025. New Age Career Skills.

Reference Books

- 1. Herta A. Murphy and Herbert W. Hildebrandt. 1997. *Effective Business Communication*. 7th edition. McGraw- Hill.
- 2. Jeff Butterfield. 2020. Soft Skills for Everyone. Cengage India Pvt. Ltd.
- 3. Jayaprakash N Satpathy. 2024. Soft Skills for Career. Urania Publishing House.
- 4. S. Xavier Alphonse S. J. 2008. *Change or Be Changed*. ICRDCE. Sri Venkateswara Printers. Chennai.
- 5. AK. Xavier. 2025. Employability Skills. JKP Publications. Madurai.

Web Resources

- 1. https://exchange.nottingham.ac.uk/content/uploads/Professional-Competencies-Handbook-Sept-2018.pdf
- 2. https://vpge.stanford.edu/professional-development/competencies-grad-grow
- 3. https://vpge.stanford.edu/professional-development/competencies-grad-grow
- 4. https://www.indeed.com/career-advice/resumes-cover-letters/core-competencies-and-skills-valued-by-employers
- 5. https://resources.hrsg.ca/blog/what-s-the-difference-between-skills-and-competencies

SEMESTER V INTERNSHIP

Course Code	L	Т	Р	S	Credits	Inst. Hours	Marks
CU235IS1	-	I	-	-	2	-	100

FRAMEWORK FOR INTERNSHIP

- Preparatory Inputs
- Industrial Visit
- Internship
- Periodic reviews by industry supervisor and faculty guide
- Report Writing
- Viva-voce

AGERCOIL

Private Industry.

S.No.	Components	Marks
1	Industry Contribution	50
2	Report & Viva-voce	50

GUIDELINES FOR PREPARING INTERNSHIP REPORT

The training report should be presented in the following format only:

- a) The report should be printed in A4 sheets.
- b) Text Format in the report:
 - Times New Roman 12 Font size, with 1.5 line spacing.
 - Margins 1.5" left and 1" all other sides of the report.
- c) Page numbers should be placed at the bottom middle position.
- d) Chapters should be numbered as I, II, III and IV.
- e) The tables and charts should be in the format of 1.1, 1.2, etc.
- f) The training report should have a minimum of 25 pages and should not exceed 50 pages.
- g) Students should submit 2 hard copies of report (department copy + student copy) duly signed by the faculty guide and the HOD.
- h) The hard copy should be in bound format with soft binding as the cover page.
- i) Students are eligible for training evaluation only if she has completed 25 days of training.

FORMAT FOR INTERNSHIP REPORT

The report should be bound with pages in the following sequence:

- 1) Cover page Outer cover of the report.
- 2) Front page The format of cover page and front page should be one and the same.

MAGERCOIL

315

- 3) Certificate
- 4) Company Certificate
- 5) Declaration
- 6) Acknowledgement
- 7) Contents
- 8) List of Tables if any
- 9) List of Figures/Charts if any
- 10) List of Abbreviations, if any
- 11) Chapter I, II, III and IV
- 12) Appendices
- 13) Bibliography

GUIDELINES FOR WRITING ACKNOWLEDGEMENT

The summer training report should contain acknowledgements in the following order:

- Principal & Secretary, College Management
- The Head of the Department
- Faculty guide and Industry supervisor
- Management of the organization in which training was taken up.

GUIDELINES FOR WRITING CHAPTERWISE REPORT

- Chapter I of the report should be titled as "INTRODUCTION". The Introduction chapter should include Introduction, Importance, Objectives, Scope and Period of the training.
- > Chapter II of the report should be titled as "COMPANY PROFILE".
- Chapter III of the report should be titled as "ACTIVITIES DONE." The third chapter should cover the objectives of the different departments and its functioning and also the learning outcome.

Tables and figures in a chapter should be placed in the immediate vicinity of the reference where they are cited.

Chapter IV should be titled as "CONCLUSION". The Conclusion part should include the observations made by the trainee in each department and the extent of fulfillment of training objectives and also reflections.

SEMESTER V HUMAN RIGHTS, JUSTICE AND ETHICS

Course	L	Τ	P	S	Credits	Inst. Hours	Total	Μ	larks	
Code							Hours	CIA	External	Total
UG235HR	l 1	-	-	-	1	1	15	50	50	100

Learning Objectives

- 1. To identify issues, problems, and violations of human rights.
- 2. To promote awareness of social justice, equality and human dignity.

Course Outcomes

On th	e successful completion of the course, students will be able to:	
1.	explain human rights principles and the role of the UN, with a focus on human	K1,
	rights issues in India.	K2
2.	apply ethical principles in social, national, and professional contexts.	K3
3.	analyse social justice issues like untouchability, casteism, and discrimination.	K4
4.	examine legal frameworks for women's and child rights in India.	K4
5.	assess media's influence on values, digital rights, and consumerism.	K5
	K1-Remember; K2 - Understand; K3 – Apply; K4 - Analyse; K5 - Evaluate	

Units	Contents	No. of Hours
Ι	Social Justice: Concept and need for social justice-Parameters of social justice - Issues: untouchability, casteism, and discrimination	3
II	Foundations of Human Rights: Concept and principles of human rights- United Nations and Human Rights- Human rights concerns in India	3
III	Women's Rights and Child Rights: UN and women's rights – major issues - Constitutional and legal provisions for women in India - Child rights in India – Major Issues -legal framework and enforcement	3
IV	Values and social media: Media Power- Socio, cultural and political consequences of mass mediated culture - New media prospects and challenges - Role of media in value building -Digital Rights and Privacy- Consumerist culture	3
V	Ethics: Meaning and Importance- Social ethics: Tolerance, equity, justice for all -Nationalism: love for nation, pride for nature- Professional ethics: Dedication to work and duty.	3
	Total	15

Reference Books

- 1. Baxi, Upendra. 2008 The Future of Human Rights. Oxford University Press,.
- 2. Donnelly, Jack. 2013. Universal Human Rights in Theory and Practice. Cornell University Press.
- 3. Agnes, Flavia. Law and Gender Inequality: The Politics of Women's Rights in India. Oxford University Press, 2001.
- 4. State of the World's Children 2021. UNICEF
- 5. McLuhan, Marshall. Understanding Media: The Extensions of Man. MIT Press, 1994.
- 6. Zuboff, Shoshana. *The Age of Surveillance Capitalism: The Fight for a Human Future at the New Frontier of Power*. PublicAffairs, 2019.
- 7. Singer, Peter. *Practical Ethics*. Cambridge University Press, 2011.

Web Recourses

- 1. http://www.oxfordreference.com/views/BOOK SEARCH.html?book=t286
- 2. http://globetrotter.berkeley.edu/humanrights/bibliographies/
- 3. <u>https://libguides.princeton.edu/history/humanrights</u>

SEMESTER VI CORE COURSE VII: NUCLEAR AND PARTICLE PHYSICS

Course Code	L	Т	Р	S	Credits	Inst.	Total		Marks	
						Hours	Hours	CIA	External	Total
PU236CC1	6	-	-	-	5	6	90	25	75	100

Prerequisites:

Basic knowledge on nuclear and particle physics to learn about the principles and properties.

Learning Objectives:

- 1. To acquire knowledge on static properties of nuclei and its stability.
- 2. To understand the background of various nuclear models.

Course Outcomes

On t	he successful completion of the course, student will be able to:	,
1	understand constituents, properties and models of nucleus.	K1&K2
2	give reason for radioactivity and study their properties.	K1&K2
3	learn about the principles of various particle detectors and accelerators.	K2&K3
4	acquire knowledge on different types of nuclear reactions and their applications.	K3&K4
5	Know the reason for cosmic rays and their effect on the surface of earth and also understand the classification of elementary particles.	K4&K5
	And also understand the classification of elementary particles.	

K1-Remember;K2-Understand;K3 -Apply;K4 -Analyze;K5 - Evaluate

Unit	Contents	No. of Hours
I	PROPERTIES OF NUCLEUS Constituents of nucleus – isotopes, isobars, isotones – nuclear size, mass, density, charge, spin, angular momentum, magnetic dipole moment, electric quadrupole moment (qualitative) – binding energy – mass defect – packing fraction – nuclear stability – binding energy per nucleon graph – properties of nuclear force – meson theory of nuclear forces – Yukawa potential. NUCLEARMODELS Liquid drop model–Weizacker's semi-empirical mass formula –shell model– magic numbers.	18
щ	RADIOACTIVITY Radio activity – laws of radioactivity – radioactive disintegration, decay constant, half-life, mean-life– units of radioactivity–successive disintegration – transient and secularequilibrium–propertiesofalpha,betaandgammarays–Geiger-Nuttallaw– □-ray spectra –Gammow's theory of □-decay(qualitative)–□-ray spectrum– neutrino theory of □-decay– nuclear isomerism– K-shell capture– internal conversion – non- conservation of parity in weak interactions.	18
ш	PARTICLE DETECTORS AND ACCELERATORS DETECTORS Gas detectors –ionization chamber – Geigger- Muller counter – scintillation counter – photo multiplier tube (PMT) – semiconductor detectors – neutron detector. ACCELERATORS Linear accelerators –cyclotron – synchrotron – betatron– electron synchrotron – proton synchrotron.	18
IV	NUCLEARREACTIONS Types of nuclear reactions –conservation laws in nuclear reaction – Q-value– threshold energy – nuclear fission – energy released in fission – chain reaction – critical mass – nuclear reactor –uses – atom bomb – nuclear fusion – sources ofstellar	18

	TOTAL	90					
	laws and symmetry – quarks and types.	r					
	fundamental interactions – quantum numbers of elementary particles – conservation						
	Particlesandantiparticles-classificationofelementaryparticles-typesof						
	ELEMENTARYPARTICLES						
v	future of the Universe (elementary ideas only).	18					
\mathbf{V}	cosmic ray showers – altitude and latitude effects –discovery of positron – pair production–annihilation of matter – Van-Allen radiation belts – big-bang theory–						
	Discovery of cosmic rays –primary and secondary cosmic rays –cascade theory of						
	COSMICRAYS						
	COSMICRAYSANDELEMENTARYPARTICLES						
	controlled thermonuclear reactions - hydrogen bomb.						
	energy – proton-proton cycle – Carbon-Nitrogen cycle – thermonuclear reactions –						

half-life, mean-life , units of radioactivity, properties of alpha, beta and gammarays, Geiger-Nuttal law

Textbooks

- 1. Murugesan R., Kiruthiga Sivaprasath,2013, Modern Physics, S. Chand &Co, New Delhi.
- 2. Brijlaland N., Subramaniyan,2006,Atomic and Nuclear Physics, S. Chand &Co, New Delhi.

ReferenceBooks

- 1. Rajam J.B., 2018 , ModernPhysics, S.Chand&Co, New Delhi.
- 2. Tayal D.C., 2006, NuclearPhysics, Himalayan Publishing House, Mumbai.
- 3. Bernard L.Cohen., 1998, Concepts of nuclear Physics, TataMcgrawHillNewDelhi.
- 4. Knoll G.F., 2000, Radiation detection and measurement, JohnWiley&Sons.
- 5. Roy R.R., Nigam B.,1997, Nuclear Physics, 1stEdition, NewAgeInternational (P)Ltd, New Delhi.

Web Resources

- 1. http://hyperphysics.phy-astr.gsu.edu/hbase/nuccon.html
- 2. https://www.kent.edu/physics/nuclear-physics-links
- 3. https://www2.lbl.gov/abc/links.html
- 4. https://www.youtube.com/watch?v=OqNDFF1RsM
- 5.https://www.youtube.com/watch?v=DEsTkXTtOLD

MAPPINGWITHPROGRAMMEOUTCOMESAND PROGRAMME SPECIFIC OUTCOMES

							00100				
	Q	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3
	CO1	3	3	2	2	3	2	3	2	2	2
	CO2	2	3	3	2	3	2	3	2	3	3
	CO3	2	2	2	3	2	3	3	3	2	2
	CO4	3	3	2	2	3	2	2	2	2	3
	CO5	2	3	2	3	3	2	3	2	3	2
Y	TOTAL	12	14	11	12	14	11	14	11	12	12
	AVERAGE	2.4	2.8	2.2	2.4	2.8	2.2	2.8	2.2	2.4	2.4
				•	a .	A 3 6 31	4 7				

3– Strong,2-Medium,1-Low

					SEM	ESTERVI		
C	COR	EC	OU	RS	E VIII: S	OLID STATE	E PHYSI	CS

Course Code	L	Т	Р	S	Credits	Inst. Hours	Total			
							Hours	CIA	External	Total
PU236CC2	6	•	•	-	5	6	90	25	75	100

Pre-requisite:

Students should understand the bonding, crystal structure, lattice dynamics, thermal, magnetic, dielectric properties, ferroelectric and superconducting properties of materials.

Learning Objectives:

- 1. To understand the fundamental concepts of bonding, crystal structures, lattice dynamics, and their impact on material properties, including electrical, thermal and optical behavior.
- 2. To analyze the magnetic, dielectric, ferroelectric and superconducting properties of solids, along with their theoretical models and technological applications.

Course Outcomes

On the su	ccessful completion of the course, student will be able to:	
1.	classify bonding types and crystal structures and analyze crystal structures	K1
	using X-ray diffraction techniques.	
2.	understand lattice dynamics and their role in determining the electrical and	K2
	thermal properties of materials.	
3.	explain the classification of magnetic materials based on their behavior and	K3
	underlying physical principles.	
4.	comprehend the dielectric behavior of materials including polarization	K3&K4
	mechanisms and dielectric breakdown.	
5.	appreciate the properties of ferroelectric and superconducting materials,	K5
	including their applications in modern technology.	

K1-Remember;K2-Understand;K3 - Apply;K4 - Analyze;K5 - Evaluate

Units	Contents	No.of Hours
Ι	BONDINGIN SOLIDS: Types of bonds in crystals -Ionic, covalent, Metallic, Vander waal's and Hydrogen Bonding Bond energy of sodium chloride molecule - variation of inter atomic force with inter atomic spacing- cohesive energy – cohesive energy of ionic solids - application to sodium chloride crystal Evaluation of Madelung constant for sodium chloride	18

Soft and Hard Magnets	
	90
(no derivation)	
	18
polarisability – ionic, orientational and space charge polarization –internal field	
1 1	
DIELECTRIC PROPERTIES OF MATERIALS, polarization and algority	
discussion of B-H curve –hysteresis and energy loss – soft and hard magnets.	
	10
rotating crystal method.	
methods: Laue method, powder method and	
	18
crystal lattice - lattice translational vectors - lattice with basis - unit cell-	
	 Bravais' lattices – Miller indices – procedure for finding them–packing of BCC and FCC structures – structures of NaCl and diamond crystals – reciprocal lattice – reciprocal lattice vectors – properties – reciprocal lattices to SC, BCC and FCC structures – X-rays – Bragg's law(simple problems)–experimenta methods: Laue method, powder method and rotating crystal method. C PROPERTIES OF SOLIDS: permeability, susceptibility, relation between sification of magnetic materials – properties of dia, para, ferro, ferri and ant ism – Langevin's theory of diamagnetism – Langevin's theory of paramagnetism – slaw–Weiss theory of ferromagnetism (qualitative only)–domains– discussion of B-H curve –hysteresis and energy loss – soft and hard magnets. DIELECTRIC PROPERTIES OF MATERIALS: polarization and electric susceptibility – local electric field of an atom – dielectric constant and polarisability – ionic, orientational and space charge polarization – internal field – Clausius Mosotti relation –frequency dependenceofdielectricconstant-dielectric constant–dielectric break down and itstypes. FERROELECTRIC&SUPERCONDUCTINGPROPERTIESOF MATERIALS: Ferroelectric effect: Curie-Weiss Law – ferroelectric domains - conductor, semiconductor (P and N type) and insulator – conductivity of semiconductor – mobility – Hall effect – measurement of conductivity (four probe method) - Hall coefficient. Superconductivity: Experimental results –critical temperature –critical magnetic field–Meissner effect-type-I and type-II superconductors– London's equation and penetration depth – isotope effect – idea of BCS theory (no derivation)

- Textbook
- 1. Kittel ,2003.Introduction to Solid State Physics, Willey Eastern Ltd
- 2. RitaJohn. 2014. Solid state Physics, 1stedition,TataMcGraw Hill publishers **ReferenceBooks**
- 1. RL Singhal, Kedarnath Ram Nath .2003.Solid State Physics, &Co., Meerut
- 2. J.P. Srivastava .2006. Elements of Solid State Physics, , 2ndEdition, Prentice-Hallof India
- 3. LeonidV. Azaroff. 2004. Introduction to Solids, TataMc-GrawHill
- 4. Raghavan.2013 .Materials science and Engineering, PHI
- 5. S.O.Pillai. 2019. Solid State Physics, Narosa publication **Web Resources**
- 1. MIT Open Course Ware Solid State Physics https://ocw.mit.edu/courses/physics/8-231-physics-of-solids-fall-2005/ Comprehensive lecture notes, assignments, and exams from MIT.
- 2. NPTEL (IIT Lectures) Solid State Physics https://nptel.ac.in/courses/115/103/115103108/ Video lectures from IITs covering bonding, crystal structures, X-ray diffraction and more.
 - 3. University of Cambridge Condensed Matter Physics

https://www.phy.cam.ac.uk/teaching/teaching-materials

Solid State Physics resources, lecture notes and problem sets.

- 4. BYJU's-Application of Basic Solid State Physics
- 5. NPTEL Online Course–Solid State Physics

MAPPINGWITHPROGRAMMEOUTCOMES AND **PROGRAMME SPECIFIC OUTCOMES**

CO1 3 3 3 3 2 3 2 3 3 3 3 3 CO2 3 </th <th>CO1 3 3 3 3 2 3 2 3 3 3 3 3 CO2 3<!--</th--><th>CO1 3 3 3 3 2 3 2 3</th><th>CO1 3 3 3 3 2 3 2 3</th><th>}</th><th></th><th>$D \land 4$</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></th>	CO1 3 3 3 3 2 3 2 3 3 3 3 3 CO2 3 </th <th>CO1 3 3 3 3 2 3 2 3</th> <th>CO1 3 3 3 3 2 3 2 3</th> <th>}</th> <th></th> <th>$D \land 4$</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>	CO1 3 3 3 3 2 3 2 3	CO1 3 3 3 3 2 3 2 3	}		$D \land 4$								
CO2 3 3 3 3 3 3 3 2 3 3 3 3 CO3 3 3 3 3 3 3 2 3 3 3 3 CO4 3 3 3 3 2 2 3 3 3 3 CO4 3 3 3 3 2 2 3 3 3 3 CO5 3 3 3 3 1 3 3 2 3 3 3 TOTAL 15 15 15 13 12 14 14 15 15 15	CO2 3 3 3 3 3 3 3 2 3 3 3 3 CO3 3 3 3 3 3 3 2 3 3 3 3 CO4 3 3 3 3 2 2 3 3 3 3 CO4 3 3 3 3 2 2 3 3 3 3 CO5 3 3 3 3 1 3 3 2 3 3 3 3 TOTAL 15 15 15 13 12 14 14 15 15	CO2 3 3 3 3 3 3 2 3 3 3 CO3 3 3 3 3 3 3 2 3 </th <th>CO2 3</th> <th>;</th> <th>0</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>	CO2 3	;	0									
CO3 3 3 3 3 3 2 3 3 3 3 CO4 3 3 3 3 2 2 2 3 </td <td>CO3 3 3 3 3 3 2 3 3 3 3 CO4 3 3 3 3 2 2 2 3<!--</td--><td>CO3 3 3 3 3 3 2 3 3 3 3 CO4 3 3 3 3 2 2 2 3<!--</td--><td>CO3 3</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td></td>	CO3 3 3 3 3 3 2 3 3 3 3 CO4 3 3 3 3 2 2 2 3 </td <td>CO3 3 3 3 3 3 2 3 3 3 3 CO4 3 3 3 3 2 2 2 3<!--</td--><td>CO3 3</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td>	CO3 3 3 3 3 3 2 3 3 3 3 CO4 3 3 3 3 2 2 2 3 </td <td>CO3 3</td> <td></td>	CO3 3											
CO4 3 3 3 3 2 2 2 3 3 3 3 CO5 3 3 3 3 3 1 3 3 2 3 </td <td>CO4 3 3 3 2 2 2 3 3 3 3 CO5 3 3 3 3 3 1 3 3 2 3<!--</td--><td>CO4 3 3 3 3 2 2 2 3 3 3 3 CO5 3 3 3 3 3 3 1 3 3 2 3<!--</td--><td>CO4 3 3 3 3 2 2 2 3</td><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>,</td></td></td>	CO4 3 3 3 2 2 2 3 3 3 3 CO5 3 3 3 3 3 1 3 3 2 3 </td <td>CO4 3 3 3 3 2 2 2 3 3 3 3 CO5 3 3 3 3 3 3 1 3 3 2 3<!--</td--><td>CO4 3 3 3 3 2 2 2 3</td><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>,</td></td>	CO4 3 3 3 3 2 2 2 3 3 3 3 CO5 3 3 3 3 3 3 1 3 3 2 3 </td <td>CO4 3 3 3 3 2 2 2 3</td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>,</td>	CO4 3 3 3 3 2 2 2 3	1										,
CO5 3 3 3 3 1 3 3 2 3 3 TOTAL 15 15 15 15 13 12 14 14 15 15	CO5 3 3 3 3 1 3 3 2 3 3 TOTAL 15 15 15 15 12 14 14 15 15	CO5 3 3 3 3 1 3 3 2 3 3 TOTAL 15 15 15 15 13 12 12 14 14 15 15 AVERAGE 3 3 3 3 2.6 2.4 2.4 2.8 3 3 3 AVERAGE 3 3 3 2.6 2.4 2.4 2.8 3 3 3 J 3 3 2.6 2.4 2.4 2.8 2.8 3 3 3 J 3 3 2.6 2.4 2.4 2.8 2.8 3 3 3 J 3 3 2.6 2.4 2.4 2.8 2.8 3 3 J 3 3 3 3 3 3 3 3 3 J 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 </td <td>CO5 3 3 3 3 1 3 3 2 3 3 TOTAL 15 15 15 15 13 12 12 14 14 15 1 AVERAGE 3 3 3 3 2.6 2.4 2.4 2.8 2.8 3 3 3 AVERAGE 3 3 3 3.6 2.4 2.4 2.8 2.8 3 3 3 J 3 3 3 3.6 2.4 2.4 2.8 2.8 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2.6 2.4 2.4 2.8 2.8 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4</td> <td></td>	CO5 3 3 3 3 1 3 3 2 3 3 TOTAL 15 15 15 15 13 12 12 14 14 15 1 AVERAGE 3 3 3 3 2.6 2.4 2.4 2.8 2.8 3 3 3 AVERAGE 3 3 3 3.6 2.4 2.4 2.8 2.8 3 3 3 J 3 3 3 3.6 2.4 2.4 2.8 2.8 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2.6 2.4 2.4 2.8 2.8 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4											
TOTAL 15 15 15 15 12 12 14 14 15 15	TOTAL 15 15 15 15 12 12 14 14 15 15	TOTAL 15 15 15 13 12 14 14 15 15 AVERAGE 3 3 3 3 2.6 2.4 2.4 2.8 2.8 3	TOTAL 15 15 15 15 13 12 12 14 14 15 1 AVERAGE 3 3 3 3 2.6 2.4 2.4 2.8 3											1
TOTAL 15 15 15 13 12 12 14 14 15 15 AVERAGE 3 3 3 2.6 2.4 2.4 2.8 2.8 3 3 3 Joint Contract 3 3 2.6 2.4 2.4 2.8 2.8 3 3	TOTAL 15 15 15 13 12 12 14 14 15 15 AVERAGE 3 3 3 2.6 2.4 2.4 2.8 2.8 3 <t< td=""><td>AVERAGE 3 3 3 2.6 2.4 2.8 2.8 3 3 3- Strong,2-Medium,1-Low</td><td>AVERAGE 3 3 3 3 3 2.6 2.4 2.8 2.8 3 3 3 3 - Strong,2-Medium,1-Low</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	AVERAGE 3 3 3 2.6 2.4 2.8 2.8 3 3 3- Strong,2-Medium,1-Low	AVERAGE 3 3 3 3 3 2.6 2.4 2.8 2.8 3 3 3 3 - Strong,2-Medium,1-Low											
AVERAGE 3 3 3 2.6 2.4 2.8 2.8 3 3 3- Strong,2-Medium,1-Low Strong,2-Medium,1	AVERAGE 3 3 3 2.6 2.4 2.8 2.8 3 3 3- Strong,2-Medium,1-Low	AVERAGE 3 3 3 3 2.6 2.4 2.4 2.8 2.8 3 3 3	AVERAGE 3 3 3 3 2.6 2.4 2.4 2.8 2.8 3 3 3 3 3 Strong,2-Medium,1-Low	5	15	15	13	12	12	14	14	15	15	
3– Strong,2-Medium,1-Low	3– Strong,2-Medium,1-Low	3-Strong,2-Medium,1-Low	3-Strong,2-Medium,1-Low	;	3	3	2.6	2.4	2.4	2.8	2.8	3	3	
	OM	Magges contraction of the	500 Milling Milling							JE.	J. L.			
A OT		Marken and a second for the second se	poss colling the	7			Ś							
AUTOT		or cross coulties	2055 COLLE											
ARCHUTOT	CHLAD *	JA CROSS COLL	20550011		. (S)								
EGELAUTOR	EGHADY	JA CROSS CU	2055		E E	30								
ALLE THAT OF	ALLEGERAD -	JLY CROSS	2057			36	Y.							
COLLECTION	COLLEGERADY	JLX CROY			LE.	JE .	Y.							
COLLEGERAUTOR	COLLEGERADI	STA CHE				36								
650011HGHUNDA	oss contrative	JIX .	$C\Sigma$			31	Y							
ROSCOLLINGTIC	ROSSOUTHUNDE					31								
and and a solution of the solu	CROSS COLLIFCHING	$\sum $				31								
A CROSS COLLEGERATION	CROSS COLLECTION					31								
W CROSS COLLEGEMENTON	W CROSS COLLING HAD'S					31								
JA CROSS COLLIFCTURING	JA CROSS COLLEGERADIN					31								
Mags confiction of	Magges contractive													
Maggs out the the the test of	on on the second of the second					31								
Mass contraining	on and the second of the secon					31								
Mass contraining	States Contraction					31								

SEMESTER VI CORE LAB COURSE VII: GENERAL PHYSICS LAB VII

							Total		Marks	
Course Code	L	Т	Р	S	Credits	Inst. Hours	Hours	CIA	External	Total
PU236CP1	-	-	2	-	2	2	30	25	75	100

Pre-requisite:

Knowledge on Basic principles of diffraction, spectroscopy, fundamentals of electromotive force (EMF), magnetic field and thermoelectric effects.

Learning Objectives:

- 1. To understand the working principles of optical instruments, potentiometers, and magnetometers for precise experimental measurements in physics.
- 2. To develop skills in measuring optical constants, resistance, EMF, and magnetic moments using standard laboratory techniques.

Course Outcomes

	Course Outcomes	
On the s	successful completion of the course, students will be able to:	
1.	recall and understand fundamental principles of optics, electromagnetism, and thermal physics applied in various experimental setups.	K1&K2
2.	apply experimental techniques to determine optical constants, resistance, EMF, and magnetic field intensity in laboratory conditions.	К3
3.	analyze data from spectroscopic and electrical experiments to determinephysical properties such as Rydberg's constant, temperature coefficients, and magnetic moments.	K4
4.	evaluate sources of error in precision measurements and propose improvements to experimental methodologies.	K5
5.	create models and experimental setups based on fundamental physics principles.	K6

K1–Remember; K2–Understand; K3–Apply; K4–Analyse; K5–Evaluate; K6–Create

Contents(Any six experiments)

- 1. Spectrometer (i-d) curve.
- 2. Spectrometer (i-i') curve.
- 3. **Spectrometer** Cauchy's constant
- 4. Spectral response of photoconductor (LDR).
- 5. Potentiometer Resistance and Specific resistance of the coil.
- 6. Potentiometer Calibration of high range voltmeter.
- 7. Potentiometer E.M.F of a thermocouple.
- 8. Carey Foster's bridge-Temperature coefficient of resistance of the coil.
- 9. Deflection Magnetometer Determination of Magnetic moment of a bar magnet and BH using circular coil carrying current.
- 10. Vibration magnetometer-Determination of BH using circular coil carrying current-Tan B position.
- 11. M.G-Thermo emf
- 12. High resistance by leakage-B.G

Text Books:

1. Chauhan S. P., and C. L. Arora. 2021. B.Sc. Practical Physics, S. Chand Publishing, New Delhi, India.

2. Singh R. K., 2019. Practical Physics: A Laboratory Manual, Pearson Education, New Delhi, India.

Reference Books:

- 1. Shukla R.P., AnchalSrivastava, 2016. Experimental Physics:Principles and Methods, New Age International, New Delhi, India.
- 2. Arthur Beiser, 2003.Concepts of Modern Physics, McGraw-Hill, NewYork, United States.
- 3. Eugene Hecht, 2017. Optics, Pearson, Harlow, United Kingdom.
- 4. David Halliday, Robert Resnick, JearlWalker, 2013. Fundamentals of Physics, Wiley, Hoboken, United States.
- 5. Francis Jenkins, Harvey E.White, 2001. Fundamentals of Optics, McGraw-Hill, New York, United States.

Web Resources:

- 1. https://ocw.mit.edu/courses/physics/
- 2. https://nptel.ac.in/courses/115/101/115101005/
- 3. http://hyperphysics.phy-astr.gsu.edu/
- 4. https://phet.colorado.edu/en/simulations/category/physics
- 5. https://www.khanacademy.org/science/physics/light-waves

MAPPINGWITHPROGRAMMEOUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

		1 11(JOI					COMIL				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3	3	3	3	3	3	3	3
CO2	3	3	3	3	3	3	3	3	3	3	3	3
CO3	3	3	3	3	3	3	3	3	3	3	3	3
CO4	3	3	3	3	3	3	3	3	3	3	3	3
CO5	3	3	2	2	2	2	2	2	2	3	3	2
TOTAL	15	15	14	14	14	14	14	14	14	15	15	14
AVERAGE	3	3	2.8	2.8	2.8	2.8	2.8	2.8	2.8	3	3	2.8

3-Strong,2-Medium,1-Low

SEMESTER VI CORE LAB COURSEVIII: GENERAL PHYSICS LAB VIII

Course Code	L	Τ	Р	S	Credits	Inst.	Total		Marks	
						Hours	Hours	CIA	External	Total
PU236CP2	-	-	2	-	1	2	30	25	75	100

Prerequisite:

Knowledge on basic concepts of ICs, Diodes and Op-amps

Learning Objectives:

- 1. To perform basic experiments on characteristics of electronic devices and then get into the applications such as amplifiers, oscillators, multivibrators.
- 2. To analyse the functioning of Logic gates and ICs and understand their applications.

Course Outcomes

On t	he successful completion of the course, students will able to:	
1.	recall the basic concepts of transistors, diodes and operational amplifiers.	K1&
		K2
	design and analyze operational amplifier-based circuits such as differentiators,	
2.	integrators, inverting, non-inverting, summing, adder, and subtractor circuits.	K3
3.	implement and verify Boolean expressions and demonstrate NAND as a universal	K3
	gate using logic gates.	
4.	construct and analyze diode-based clipping and clamping circuits.	K3
5.	examine the characteristics of a transistor in CE and CB configurations.	K4
	K1 Domombor K2 Understand K3 Apply K4 Apply 70	

K1–Remember; K2–Understand;K3-Apply;K4-Analyze

Contents (Any Six Experiments)

- 1. Operational amplifier-differentiator & integrator.
- 2. Operational amplifier-inverting amplifier and summing.
- 3. Operational amplifier -non-inverting amplifier and summing.
- 4. NAND as universal building block.
- 5. Verification of Boolean Expression
- 6. Regulatedpowersupply-IC-7909 &7809or equivalent
- 7. Decoder
- 8. Op-amp: Adder and Subtractor
- 9. Clipping and clamping circuits using diodes.
- 10. Characteristics of a transistor–(CE mode)
- 11. RC coupled CE transistor amplifier-single stage.
- 12. Transistor Emitter follower.

Text Books

- 1. Gayakwad, Ramakant A.2000.*Op-Amps and Linear Integrated Circuits*. Pearson Education, India.
- 2. Boylestad, Robert L., and Louis Nashelsky. 2017. *Electronic Devices and Circuit Theory*. Pearson Education, India.

Reference Books

1. Bell, DavidA.2015. *Electronic Devices and Circuits*. Oxford University Press, India.

2. Mano, M.Morris, and MichaelD.Ciletti.2018. *Digital Design*. Pearson Education, India.

- 3. Jain, R. P. 2010. Modern Digital Electronics. Mc Graw Hill Education, India.
- **4.** Malvino, Albert Paul, and Donald P.Leach.2006. *Digital Principles and Applications*.

Mc Graw Hill Education, India.

5. Millman, Jacob, and Christos C.Halkias.2010. Electronic Devices and Circuits. Mc Graw Hill Education, India.

Web Resources:

- 1. https://www.allaboutcircuits.com/
- 2. https://www.electronics-tutorials.ws/
- 3. https://nptel.ac.in/courses/108/108/108108111/
- 4. https://learn.sparkfun.com/tutorials
- 5. https://circuitdigest.com/

MAPPINGWITHPROGRAMMEOUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

			C	DUTC	OME	S						
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3	3	3	3	3	3	3	3
CO2	3	3	3	3	3	3	3	3	3	3	3	3
CO3	3	3	3	3	3	3	3	3	3	3	3	3
CO4	3	3	3	3	3	3	3	3	3	3	3	3
COS	3	3	2	2	2	2	2	_2	2	3	3	2
ГОТАL	15	15	14	14	14	14	14	14	14	15	15	14
AVERAGE	3	3	2.8	2.8	2.8	2.8	2.8	2.8	2.8	3	3	2.8
AVERAGE	550		GÍ									

SEMESTER VI

CORE LAB COURSE IX: GENERAL PHYSICS LAB IX (C++PROGRAMMING)

Course Code	L	Т	Р	S	Credits	Inst.	Total		Marks	
						Hours	Hours	CIA	External	Total
PU236CP3	-	-	2	-	1	2	30	25	75	100

Prerequisites:

Knowledge on C++Programming in basic Physics

Learning Objectives:

- 1. Toapplyobjectorientedprogrammingtechniquestosolvephysicsproblems.
- 2. To develop programs using functions and classes (objects, array of objects,
- friend functions, passing and returning objects).

Course Outcomes

	0	
On the s	successful completion of the course, student will be able to:	
1	understand the principles of object oriented program to	K1&K2
	construct computer programs and modeling of experimental	
	data for the solution of problems in physics.(period of a	
	pendulum and	
	Young's modulus of a material).	
2	apply object oriented programming techniques to solve	K1&K2
	computing problems. (addition, subtraction, multiplication and	
	division)	
3	develop programs using functions and classes.(objects, array of	K2&K3
	objects, friend functions, passing and returning objects,	
	function declaration with/without using the return statement).	
4	Formulate the applications of pointers and virtual functions.	K3&K4
	Distinguish formatted and unformatted I/O operations.	
5	develop programs using constructor, destructor, operator	K4&K5
	overloading and inheritance. (generate a series of Fibonacci	
	numbers using constructor in the scope of class definition/out	
	of the class definition using the scope resolution operator).	
IZ1 D	member V2 Hadestend V2 Analy V4 Analyzer V5 Evaluate	

K1-Remember; K2-Understand; K3-Apply; K4 - Analyze; K5-Evaluate

Contents (Any Eight Experiments) 1. To read any two numbers through the keyboard and to perform simple arithmetic operation (addition, subtraction, multiplication and division) and display the results

- using Cinand Coutfunctions. Use do-while loop.
- 2. To display the name of the day in a week, depending upon the number entered through key board using Switch-Case statement
- 3. To test the validity of any entered character whether it belongs to the alphabetical set or a number or a special character the data obtained from uniform bending method.
- 4. Solve quadratic equation
- 3. Write a simple C++program to find the path travelled by a body
- 4. To find the sum of the series using for loop.
 - $Sum=1+3+5+...n \\ Sum=1+2^2+4^2+...+n^2$

- 5. To find the factorial of a number by using function declaration with/without using the return statement
- 6. To read a set of numbers from a standard input device and to find out the largest number in the given array using function declaration. Also sort them in the ascending or the descending order.
- 7. To read the elements of the given two matrices of order mx n and to perform the matrix addition and display the transpose of the result.
- 8. To generate a series of Fibonacci numbers using constructor where the construct or member function has been defined in the scope of class definition/ out of the class definition using the scope resolution operator.
- 9. To write a LOOP programme to find the period of a pendulum of given length L, in a gravitational field. Accept the required values using the keyboard. Also display the result.

10. Develop a program in C++to calculate the Young's modulus of a material from

Reference Books

- 1. Manual prepared by the department
- 2. Balagurusamy, E.(2015), *Object Oriented Programming with C++*. 6thedition.New Delhi: McGraw Hill Education (India) Private Limited.
- 3. Ravichandran, D.(2008), *Programming with C++*.3rdedition. NewDelhi: TataMcGrawHillPublishingcompany Ltd.

Web Resources

- 1. https://www.youtube.com/watch?y=3j0c_FhOt5U
- 2. https://www.youtube.com/watch?v=7eHuQXMCOvA&pp=ygUII25ld3RvbnI%3D
- 3. https://www.youtube.com/watch?v=vA7ShWJdfrg
- 4. https://www.slideshare.net/slideshow/algebraic-and-transcendental-equations/55260970
- 5. https://www.scribd.com/document/367146646/Complete-Lab-Manual-Lab-VII MAPPINGWITHPROGRAMMEOUTCOMES AND PROGRAMME

SPECIFIC OUTCOMES

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3	3	3	3	3	3	3	3
CO2	3	3	3	3	3	3	3	3	3	3	3	3
CO3	3	3	3	3	3	3	3	3	3	3	3	3
CO4	3	3	3	3	3	3	3	3	3	3	3	3
CO5	3	3	2	2	2	2	2	2	2	3	3	2
TOTAL	15	15	14	14	14	14	14	14	14	15	15	14
AVERAGE	3	3	2.8	2.8	2.8	2.8	2.8	2.8	2.8	3	3	2.8

3– Strong,2-Medium,1-Low

SEMESTERVI DISCIPLINE SPECIFIC ELECTIVE III: a) NUMERICAL METHODS AND C++PROGRAMMING

Course Code	L	Τ	P	S	Credits	Inst. Hours	Total		Marks	
							Hours	CIA	External	Total
PU236DE1	5	-	•	•	3	5	75	25	75	100

Pre-requisite:

Students should have basic knowledge in mathematics and computer programming **Learning Objectives:**

- 1. To understand the methods in numerical differentiation and integration and to develop the problem solving skills of the student.
- 2. To introduce and explain the basic structure, rules of compiling and execution of C++ programming.

Course Outcomes

On the s	successful completion of the course, student will be able to:	
1	recall fundamental numerical methods and their applications in scientific	K1
	computing and to identify the syntax, data-types, and control structures	
	used in C++ programming.	
	understand the numerical techniques for solving algebraic and differential	K2
2	equations and to describe object-oriented programming (OOP) concepts in	
	C++ and their significance in numerical computations.	
3	Apply numerical algorithms in C++ to solve mathematical problems like	K3
	interpolation, differentiation and integration.	
4	Compare different numerical techniques based on accuracy, efficiency,	K4
	and convergence.	
	Justify the selection of an appropriate numerical method for a given	K5&K6
5	problem based on its computational efficiency and develop optimized	
	C++ programs integrating numerical methods for real-world scientific and	
	engineering problems.	
171 D		

K1-Remember;K2-Understand;K3 -Apply;K4 -Analyze;K5 -Evaluate;K6-Create

Units	Contents	No.of
		Hours
	NUMERICALSOLUTIONS: Determination of zeros of polynomials – roots of linear equations and nonlinear algebraic equations and transcendental equations bisection and Newton-Raphson methods	
	disection and Newton-Raphson methods	15

	NUMERICALDIFFERENTIATIONANDCURVEFITTING:	15
	Newton's forward difference formula- first and second order derivatives -	
II	Maximum and Minimum values of a tabulated function-Fitting a straight	
	line–Non-linear Curve fitting:	
	Polynomial and exponential curve.	
	INTRODUCTION TO C++: Importance of C++ –basic structure of C++	15
	programming – constants, variables and data types – character set, key words	
	and identifiers - declaration of variables and data types - operators -	
	expressions: arithmetic, relational, logical, assignment - increment and	
III	decrement – conditional operators	
	Control Structures in C++: decision making with if, if-else,	
	nested if - switch -go to - break - continue -while, do while, for statements	
	Arrays and Functions: arrays, one dimensional and two dimensional –	15
IV	declaring arrays –functions-returning values from function-reference	
	argument-overloaded function-inline function-	
	Return by reference	
	ALGORITHM,FLOWCHARTANDPROGRAM:	15
	development of algorithm – flow chart for solving simple problems– average	
V	of set of numbers – greatest, smallest – conversion of Fahrenheit to Celsius	
·	and Celsius to Kelvin, miles to kilometer - sorting set of numbers in	
	ascending and descending order.	
	Total	75

Text book

- 1. Singaravelu, 1999, Numerical methods, Meenakshi publication, 4thEdn, Chennai.
- 2. Balagurusamy (2012) Programming in C++,7thEdn. Tata McGraw Hill,NewDelhi.

Reference Books

- 1. M.K.Venkatraman, 2013, Numerical Analysis, NPH
- 2. B.D.Gupta, 2013, Numerical Analysis, Konark Publishers, New Delhi, 2013
- 3. C.Byron&S.Gottfried,2003,Theory and Problems of programming in C++, Schaum's outline series, Tata McGraw Hill 2003
- 4. P.Kandasamy, K.Thilagavathy, K.Gunavathi, 2016, Numerical methods, S.Chand, New Delhi.
- 5. Balagurusamy(2020) ProgramminginC++,8thEdn.TataMc Graw Hill, New Delhi.

Web Resources

- 1. <u>https://www.youtube.com/watch?v=3j0c_FhOt5U</u>
- 2. https://www.youtube.com/watch?v=7eHuQXMCOvA&pp=ygUII25ld3RvbnI%3D
- 3. https://www.youtube.com/watch?v=vA7ShWJdfrg

4. https://www.slideshare.net/slideshow/algebraic-and-transcendentalequations/55260970

5. https://www.scribd.com/document/367146646/Complete-Lab-Manual-Lab-VII

MAPPINGWITHPROGRAMMEOUTCOMES AND PROGRAMME SPECIFIC **OUTCOMES**

02 3 2 3 3 3 2 2 3 2	CO1 3 2 3 3 2 3 2 3 2	CO1 3 2 3 3 2 3 2 3 2	CO1 3 2 3 3 2 3 2 3 2 <th2< th=""></th2<>	CO1 3 2 3 3 2 3 2 3 2 <th2< th=""></th2<>	CO1 3 2 3 3 2 3 2 3 2 <th2< th=""></th2<>	CO1 3 2 3 3 2 3 2 3 2 <th2< th=""> <th2< th=""> <th2< th=""></th2<></th2<></th2<>	CO1 3 2 3 3 2 3 2 3 2 <th2< th=""></th2<>	001	DO4											
02 3 2 3 3 3 2 2 3 2	CO2 3 2 3 3 3 2 2 3 2	CO2 3 2 3 3 3 2 2 3 2	CO2 3 2 3 3 3 2 2 3 2	CO2 3 2 3 3 3 2 2 3 2	CO2 3 2 3 3 3 2 2 3 2	CO2 3 2 3 3 3 2 2 3 2 <th2< th=""></th2<>	CO2 3 2 3 3 3 2 2 3 2	001	POI	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4	PSO
02 3 2 3 3 3 2 2 3 2 </td <td>CO2 3 2 3 3 3 2 2 3 2</td> <td>CO2 3 2 3 3 3 2 2 3 2</td> <td>CO2 3 2 3 3 3 2 2 3 2 <th2< th=""></th2<></td> <td>CO2 3 2 3 3 3 2 2 3 2</td> <td>CO2 3 2 3 3 3 2 2 3 2</td> <td>CO2 3 2 3 3 3 2 2 3 2 <th2< th=""></th2<></td> <td>CO2 3 2 3 3 3 2 2 3 2</td> <td>COI</td> <td>3</td> <td>2</td> <td>3</td> <td>3</td> <td>2</td> <td>3</td> <td>2</td> <td>3</td> <td>2</td> <td>2</td> <td>2</td> <td>2</td>	CO2 3 2 3 3 3 2 2 3 2	CO2 3 2 3 3 3 2 2 3 2	CO2 3 2 3 3 3 2 2 3 2 <th2< th=""></th2<>	CO2 3 2 3 3 3 2 2 3 2	CO2 3 2 3 3 3 2 2 3 2	CO2 3 2 3 3 3 2 2 3 2 <th2< th=""></th2<>	CO2 3 2 3 3 3 2 2 3 2	COI	3	2	3	3	2	3	2	3	2	2	2	2
03 3 2 3 3 3 2 2 3 2	CO3 3 2 3 3 3 2 2 3 2	CO3 3 2 3 3 3 2 2 3 2	CO3 3 2 3 3 3 2 2 3 2	CO3 3 2 3 3 3 2 2 3 2	CO3 3 2 3 3 3 2 2 3 2	CO3 3 2 3 3 3 2 2 3 2	CO3 3 2 3 3 3 2 2 3 2 2 2 CO4 3 2 3 3 2 2 2 3 2 2 2 CO5 3 2 3 3 2 2 3 2 2 2 TOTAL 15 10 15 15 13 11 10 15 10 10 10	CO2	3	2	3	3	3	2	2	3		2		
04 3 2 3 3 2 2 2 3 2 2 2 05 3 2 3 3 3 2 2 3 2 2 2 2 04 3 2 3 3 2 2 3 2 2 2 2 05 3 2 3 3 3 2 2 3 2 2 2 VAL 15 10 15 15 13 11 10 15 10 10 10	CO4 3 2 3 3 2 2 2 3 2	CO4 3 2 3 3 2 2 2 3 2	CO4 3 2 3 3 2 2 2 3 2 2 2 CO5 3 2 3 3 2 2 3 2 </td <td>CO4 3 2 3 3 2 2 2 3 2</td> <td>CO4 3 2 3 3 2 2 2 3 2</td> <td>CO4 3 2 3 3 2 2 2 3 2 2 2 CO5 3 2 3 3 3 2 2 3 2 2 2 2 TOTAL 15 10 15 15 13 11 10 15 10 10 10</td> <td>CO4 3 2 3 3 2 2 2 3 2</td> <td></td> <td>3</td> <td>2</td> <td>3</td> <td>3</td> <td>3</td> <td>2</td> <td>2</td> <td>3</td> <td>2</td> <td>2</td> <td>2</td> <td>2</td>	CO4 3 2 3 3 2 2 2 3 2	CO4 3 2 3 3 2 2 2 3 2	CO4 3 2 3 3 2 2 2 3 2 2 2 CO5 3 2 3 3 3 2 2 3 2 2 2 2 TOTAL 15 10 15 15 13 11 10 15 10 10 10	CO4 3 2 3 3 2 2 2 3 2		3	2	3	3	3	2	2	3	2	2	2	2
AL 15 10 15 15 13 11 10 15 10 10 10 10	TOTAL 15 10 15 15 13 11 10 15 10 10 10 10	TOTAL 15 10 15 15 13 11 10 15 10 10 10 10	TOTAL 15 10 15 15 13 11 10 15 10 10 10 1	TOTAL 15 10 15 15 13 11 10 15 10 10 10 10	TOTAL 15 10 15 15 13 11 10 15 10 10 10 10	TOTAL 15 10 15 15 13 11 10 15 10 10 10 1	TOTAL 15 10 15 15 13 11 10 15 10 10 10	CO4	3		3	3	2	2	2	3	2	2	2	2
AL 15 10 15 13 11 10 15 10 10 10 10 AGE 3 2 3 3 2.6 2.2 2 3 2 3 3 2.6 2.7 2 3 3 2.6 3 2 2 2 3 3 3 5	TOTAL 15 10 15 13 11 10 15 10	TOTAL 15 10 15 13 11 10 15 10	TOTAL 15 10 15 13 11 10 15 10 10 10 10 1 AVERAGE 3 2 3 3 2.6 2.2 2 3 2 3 3 2.6 2.2 2 3 3 2.6 2.2 2 3 3 3 5	TOTAL 15 10 15 13 11 10 15 10 11 10 11 10	TOTAL 15 10 15 13 11 10 15 10 11 10 15 10	TOTAL 15 10 15 15 13 11 10 15 10 10 10 1 AVERAGE 3 2 3 3 2.6 2.2 2 3 2 2 2 3 2 2 2 3 3 2 2 2 3 3 3 3	TOTAL 15 10 15 13 11 10 15 10 10 10 AVERAGE 3 2 3 3 2.6 2.2 2 3 2 2 2 10 3- Strong,2-Medium,1-Low	CO5	3	2	3	3	3	2	2	3	2	2	2	2
AGE 3 2 3 3 2.6 2.2 2 3 2 2 2 2 2 3- Strong,2-Medium,1-Low	AVERAGE 3 2 3 3 2.6 2.2 2 3 2 2 2 2 2 3 3-Strong,2-Medium,1-Low	AVERAGE 3 2 3 3 2.6 2.2 2 3 2 2 2 2 3 3-Strong,2-Medium,1-Low	AVERAGE 3 2 3 3 2.6 2.2 2 3 2 2 2 3 3-Strong,2-Medium,1-Low	AVERAGE 3 2 3 3 2 6 22 2 3 2 2 2 2 2 3 3 2 2 2 2	AVERAGE 3 2 3 3 2 6 22 2 3 2 2 2 2 2 2 3 - Strong,2-Medium,1-Low	AVERAGE 3 2 3 3 2.6 2.2 2 3 2 2 2 2 3 3-Strong,2-Medium,1-Low	AVERAGE 3 2 3 3 2.6 2.2 2 3 2 2 2 3-Strong,2-Medium,1-Low	TOTAL	15	10	15	15	13	11	10	15	10	10	10	
3–Strong,2-Medium,1-Low	3-Strong,2-Medium,1-Low	3-Strong,2-Medium,1-Low	3-Strong,2-Medium,1-Low	3-Strong,2-Medium,1-Low	3-Strong,2-Medium,1-Low	3-Strong,2-Medium,1-Low	3-Strong,2-Medium,1-Low	AVERAGE	3	2	3	3	2.6	2.2	2	3	2	2	2	2
	SCOLLE	CROSS COLLIE	ot cross could	HOLY CROSS COLLIN	HOLICROSSCOLLE	HOLICROSSCOLLE	HOLY CROSS COLLIN							SC C						

SEMESTER VI DISCIPLINE SPECIFIC ELECTIVE III: b) DIGITAL ELECTRONICS AND MICROPROCESSOR 8085

Course	L	Т	Р	S	Credits	Inst.	Total		Marks	
Code						Hours	Hours	CIA	External	Total
PU236DE2	5	-	-	-	3	5	75	25	75	100

Pre-requisite:

Basic knowledge of Electronics and Circuit Theory, Understanding of Boolean Algebra and Logic Gates, Fundamentals of Number Systems and Binary Arithmetic. **Learning Objectives:**

1. To understand the fundamental principles of digital logic circuits and their applications in computing.

2.To gain in-depth knowledge of Microprocessor 8085architecture, instruction set, and programming for embedded system applications.

Course Outcomes

On	the successful completion of the course, students will be able to:	
1.	remember combinational and sequential digital circuits using logic gates and	K1
	flip-flops.	
2.	comprehend the architecture and functioning of the Intel8085 microprocessor,	K2
	including its addressing modes and instruction set.	
3.	apply digital and microprocessor concepts in real-world applications like	K3
	automation, robotics, and embedded systems.	
4.	analyze assembly language programs for the 8085 microprocessor to perform	K4
	basic arithmetic, logical, and control operations.	
5.	evaluate the working of peripheral devices such as memory units, I/O devices,	K5
	and display units with the microprocessor.	

K1-Remember;K2-Understand;K3-Apply;K4-Analyse;K5–Evaluate

Units	Contents	No.of Hours
I	NUMBER SYSTEMS AND BOOLEAN ALGEBRA Decimal, binary, octal, hexadecimal numbers systems and their conversions- codes: BCD, gray and excess-3 codes –code conversions –complements (1's 2's, 9's and 10's) –binary addition, binary subtraction using 1's & 2's complement methods – Boolean laws – De-Morgan's theorem –basic logic gates-universal logic gates(NAND&NOR)–standard representation of Logic functions(SOP&POS)	15
A CHI	SEQUENTIAL CIRCUITS AND MEMORY DEVICES Adders – half and full adder –subtractors - half full subtractor –Concept - Logic circuit and truth table - Sum and Carry equations - parallel binary adder – magnitude comparator – multiplexers (4:1) & demultiplexers (1:4), encoder (8-line-to-3- line) and decoder (3-line-to-8-line), BCD to seven segment decoder.	15
ш	LOGIC GATES AND SIMPLIFICATION TECHNIQUES Flip-flops: S-R Flip-flop, J-K Flip-flop, T and D type flip-flops, master- slave flip-flop, truthtables, registers:- serial in serialout and parallel in and parallel out – counters asynchronous:-mod-8, mod-10, synchronous - 4-bit ˚ counter – general memory operations, ROM, RAM (static and dynamic).	15
IV	8085 MICROPROCESSOR 8085 Microprocessor: introduction to microprocessor – INTEL 8085 architecture – register organization –pin configuration of 8085, interruptsand its priority – Program Status Word (PSW) –instruction set of 8085 –	

	addressingmodesof8085–assemblylanguageprogrammingusing8085– programmes for addition (8-Bit & 16-Bit), subtraction (8-Bit & 16-Bit) multiplication (8- Bit), division (8- Bit).	
	I/O INTERFACES	
	Serialcommunication interface (8251-USART) –FunctionalBlock Diagram	
	Data Buffer Register, Control & Status Registers - Mode, Command, and	
	StatusWords programmable peripheralinterface (8255-PPI) –programmable	15
v	intervaltimers(8253)-keyboardanddisplay(8279),DMAcontroller	
v	(8237)Need for High-Speed Data Transfer - CPU vs. DMA-Based Data	
	Transfer.	
	Total	75
Self-st	udy Karnaugh map,,EPROM ,Multiplexers ,PSW, 8085interfaces	

Textbooks:

1.Ronald J, 1999. DigitalSystems: Principles and Applications, PHI, New Delhi.

- 2.Morris Mano M., Michael D.Ciletti, 2017. Digital Design: With an Introduction to the Verilog HDL, VHDL and System Verilog, Pearson, Harlow, United Kingdom.
 - 3. Ramesh S. Gaonkar., 2013. Microprocessor Architecture, Programming, and Applications with the 8085, Penram International Publishing, Mumbai, India.

Reference Books:

- 1. Herbert, Donald Schilling, 1985. Digital Integrated Electronics, McGraw Hill, New York, United States.
- 2. Bose S.K, 1992. DigitalSystems, NewAgeInternational, NewDelhi, India.
- 3. Anvekar D.K., Sonade, 1994. Electronic DataConverters:Fundamentals& Applications, TMH, New Delhi, India.
- 4. Malvino, Albert Paul, Donal Leach, 1993. Digital Principles and Applications, TMG Hill, New York, United States.
- 5. DouglasV,1992.Microprocessors and Interfacing, McGrawHill,NewYork, UnitedStates.

Web Resources:

- 1. https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/
- 2. https://www.khanacademy.org/computing/computer-science/cryptography/logic-gatesand-boolalg/v/logic-gates
- 3. https://www.allaboutcircuits.com/
- 4. https://www.geeksforgeeks.org/microprocessor-tutorial/
- 5. https://www.ti.com/logic-circuit.html

MAPPINGWITHPROGRAMMEOUTCOMESANDPROGRAMMES PECIFICOUTCOMES

		/				ILU	11100		OWED				
		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4	PSO5
	CO1	3	3	3	3	3	3	3	3	3	3	3	3
~	CO2	3	3	3	3	3	3	3	3	3	3	3	3
Q	CO3	3	3	3	3	3	3	3	3	3	3	3	3
	CO4	3	3	3	3	3	3	3	3	3	3	3	3
	CO5	3	2	3	2	2	3	2	3	3	3	3	3
	TOTAL	15	14	15	14	14	15	14	15	15	15	15	15
	AVERAGE	3	2.8	3	2.8	2.8	3	2.8	3	3	3	3	3
						•	CL.		r 1.	4 T			

3–Strong,2-Medium,1-Low

SEMESTER VI DISCIPLINE SPECIFIC ELECTIVE III: c) COMMUNICATION SYSTEMS

Course Code	L	Т	Р	S	Credits	Inst. Hours	Total		Marks	
							Hours	CIA	External	Total
PU236DE3	5	-	-	-	3	5	75	25	75	100

Pre-requisite:

Students should know the fundamentals of transmission and reception of radio waves and the different types of communication like fibre optic, radar, satellite and cellular

Learning Objectives:

1. To understand the principles and technologies used in various communication systems, including radio, fiber optic, radar, satellite, and mobile communication.

Course Outcomes

5

2. To gain practical knowledge of the working of communication systems, including modulation, radar systems, satellite communication, and mobile communication technologies.

n the s	uccessful completion of the course, student will be able to:	
1	recall the fundamental concepts of radio transmission and reception, including types of modulation (AM, FM)and the essential components of radio receivers.	K1
2	explain the principles of fiber optic communication, the structure of optical fibers, and the different classifications based on refractive index profiles and modes of propagation.	K2
3	apply the knowledge of radar systems to understand different types of radar, Doppler effect, and principles like MTI in communication systems.	K3
4	analyze satellite communication systems, including their orbits, frequency usage, multiple access communication, and how satellite communication systems operate in India.	K4
5	integrate knowledge of mobile communication technologies, including 4G, Wi- i,andVSATsystems,andproposeinnovativesolutionsorimprovementsfor communication systems.	K5

K1-Remember;K2-Understand;K3 - Apply;K4 - Analyze;K5 - Evaluate

ſ	Units	Contents	No. of
			Hours
5	I	Radio Transmission and Reception: transmitter – modulation types of modulation – amplitude modulation – limitations of amplitude modulation – frequency modulation – comparison of FM and AM – demodulation- essentials in demodulation – receivers: AM radio receivers – types of AM radio receivers – stages of super heterodyne radio receiver, advantages–FM receiver–difference between FM and AM receivers.	15
·	п	Fiber Optic Communication: introduction – basic principle of fiber optics – advantages – construction of optical fiber – classification based on the refractive index profile – classification based on the number of modes of propagation– losses in optical fibers–attenuation– Advantages of fiber optic communication	15

ш	RADAR Communication: introduction - basic radar system –radar range – antenna scanning –pulsed radar system– search radar –tracking radar–moving target indicator Doppler effect-MTI principle–CW Doppler radar									
IV	Atellite Communication:introductionhistoryofsatellites–satellitemmunicationsystem–satellite–basiccomponentsofsatellitemmunicationsystem–commonlyusedfrequencyinsatellite–mmunication–multipleaccesscommunication–satellite––ommunicationin India––––	15								
Self Study	satellite communication in India ,application of facsimile									

Text books

- 1. Metha.V. K, 2013, Principles of Electronics (Seventh Edition), S.Chand & Co Ltd.,
- 2. Anokh Singh and Chopra A.K, 2013, Principles of communication Engineering (Fifth Edition), S.Chand & Co.

Reference Books

- 1. Chitode.J. S, 2020), Digital Communications (First Edition), Unicorn publications
- 2. Senior John.M, 2009, Optical Fiber Communications: Principles and Practice (Third Edition), Pearson Education.
- 3. Singh.R.P, 2017,Communication Systems: Analog and Digital(Third Edition), McGraw Hill Education.
- 4. Herbert Taub, DonaldL. Schiling, 2014, Principles of Communication Systems (Second Edition), McGraw Hill Publishing Company
- 5. George Kennedy, Bernard Davis, 2009, Electronic Communication Systems(Fourth Edition), Tata McGraw-Hill

Web Resources

- 1. https://www.vedantu.com/physics/communication-systems
- 2. https://eedmd.weebly.com/uploads/9/6/6/9/96692532/carlson.pdf
- 3. https://www.geeksforgeeks.org/data-communication-definition-components-types-channels/
- 4. https://onlinelibrary.wiley.com/journal/10991131
- 5. https://archive.nptel.ac.in/courses/108/104/108104091/

MAPPINGWITHPROGRAMMEOUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

				01				10			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3
CO1	3	2	3	3	2	3	2	2	3	2	2
CO2	3	2	3	3	3	2	2	2	3	2	2
CO3	3	2	3	3	3	2	2	2	3	2	2
CO4	3	2	3	3	2	2	2	2	3	2	2
CO5	3	2	3	3	3	2	2	2	3	2	2
TOTAL	15	10	15	15	13	11	10	10	15	10	10
AVERAGE	3	2	3	3	2.6	2.2	2	2	3	2	2
						F 10	4.7				

3-Strong,2-Medium,1-Low

SEMESTERVI **DISCIPLINE SPECIFIC ELECTIVE IV: a) ELECTRONICS**

Course Code	L	Τ	P	S	Credits	Inst. Hours	Total	Marks		
							Hours	CIA	External	Total
PU236DE 4	5		_	_	3	5	75	25	75	100

Pre-requisite:

Good knowledge in basic Electronics

Learning Objectives:

- 1. To study and analyze the basic concepts and action of semiconductor diodes transistors and operational amplifiers.
- 2. To analyze the working of electronic circuits and applications. Course Outcomes

On the s	On the successful completion of the course, students will be able to:								
1.	gain knowledge in semiconductor diodes, transistor, oscillator and amplifier.	K1							
2.	infer the operation of semiconductor physics for intrinsic and extrinsic materials.	K2							
3.	apply feedback in amplifiers and oscillator circuit.	K3							
4.	analyze the types of oscillator based on the circuit design; characteristic and applications of the op-amp.	K4							
5.	justify the function of semiconductor diodes in filter and bridge circuit.	K5							

K1-Remember;K2-Understand;K3–Apply;K4-Analyze;K5–Evaluate

Units	Contents	No.of
		Hours
Ι	Semiconductor diodes and transistors: Semiconductor materials – Intrinsic semiconductors – Extrinsic semiconductors – N-type semiconductor – P-type semiconductor – P-N Junction – P-N Junction with no external voltage – P-N junction with forward bias–P-N junction with reverse bias–V-I characteristics of a P-N junction diode–Static and dynamic resistance of a diode–Half wave	15
	rectifier – Bridge Rectifier – Calculation of ripple factor and rectification efficiency–Filters (π filter) – Zener diode – Voltage regulator – Junction transistor structure–Working of transistor–Amplifying action–Three configurations–Transistor characteristics(CE configuration only).	
П	Transistor amplifier: Transistor biasing – Selection of operating point – Bias stabilization – Fixed bias and Voltage divider bias – Single stage transistor amplifier – Equivalent circuit method – Development of transistor AC equivalent circuit – h parameter equivalent circuit – Analysis of a single state CE amplifier using hybrid models: Input and output impedance, current-Voltage and power gain.	15
ш	Feedback in amplifiers: Concept of feedback in amplifiers – Types of feedback – Voltage gain of amplifier– Effect of negative feedback on gain stability, distortion and noise, input impedance, output impedance and bandwidth–Amplifier circuits with negative feedback – RC coupled amplifier without bypass capacitor – Emitter follower.	15
	Oscillator: Need for an oscillator – Generating sine wave using tuned oscillator circuit – Frequency of oscillations in LC circuit – Sustained oscillations – Positive	

IV	feedback amplifier as an oscillator (Barkhausen criterion) – Starting voltage – LC oscillators – Hartley and Colpitt's oscillators –Basic principle of RC oscillator – RC phase shift oscillator.	15
V	Operational amplifier: Parameters of a general amplifier – Ideal operational amplifier – Inverting amplifier – Non-inverting amplifier – Difference amplifier – Operational amplifier circuits – Voltage follower – Summing amplifier – Integrator – Differentiator–Log and antilog amplifiers–Comparators and Schmitt trigger.	

Self-study	Zener diode, Voltage regulator.
------------	---------------------------------

Text Books:

- 1. Bhargava, N.N., Kulshreshtha, D.C., Gupta, S.C. (2002).*Basic Electronics and Linear circuits*. (35th reprint),Tata McGraw-Hill Publishing Company Limited, New Delhi.
- 2. Rajiv Kapadia.(2012). Operational Amplifiers and Linear Integrated Circuits, Jaico Publishing House.

Reference Books:

- 1. Albert Malvino, David J. Bates,(2017). *Electronic Principles*, (7thEditionPaperback), McGraw-Hill Higher Education, USA.
- 2. Mehta, V.K, Rohit Mehta, (2014). Principles of Electronics, S Chand Publication.
- 3. Millman, J. Halkias, C.C. (1991). *Integrated Electronics*. New Delhi: Tata McGraw-Hill Publishing Company Limited.
- 4. Ryder, J.D. (2004). *Electronics: Fundamentals and Applications*. Prentice Hall International, INC., Englewood Cliffs.
- 5. Salivahanan, S., Kumar, N.S. (2012). *ElectronicDevices and Circuits*. (3rded.). New Delhi: Tata McGraw-Hill Publishing Company Limited.

Web Resources:

1. https://www.renesas.com/en/support/engineer-school/electronic-circuits-02-diodestransistors-

fets?srsltid=AfmBOoqgfCzycBX9ACVSLGbYz93yduIsbTC2KJ10BfNixKSepqqcBbf3

- 2. https://www.electrical4u.com/what-is-an-oscillator/
- 3. https://www.electronics-tutorials.ws/amplifier/amp_1.html
- 4. https://www.jntua.ac.in/gate-onlineclasses/registration/downloads/material/a159298350984.pdf
- 5. https://testbook.com/electrical-engineering/transistor-as-an-amplifier-principles-and-working

MAPPINGWITHPROGRAMMEOUTCOMESAND PROGRAMMESPECIFICOUTCOMES

			1 1	OOK					JULLO			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	2	3	1	2	3	2	3	3	3	3	3
CO2	3	2	3	1	2	3	2	3	3	3	3	3
CO3	3	2	3	1	2	3	2	3	3	3	3	3
CO4	3	2	3	1	2	3	2	3	3	3	3	3
CO5	3	2	3	1	2	3	2	3	3	3	3	3
TOTAL	15	10	15	5	10	15	10	15	15	15	15	15
AVERAGE	3	2	3	1	2	3	2	3	3	3	3	3

3–Strong,2-Medium,1-Low

SEMESTER VI DISCIPLINE SPECIFIC ELECTIVEI V: b) GEO PHYSICS

Course Code	L	Τ	P	S	Credits	Inst. Hours	Total	Marks		
							Hours	CIA	External	Total
PU236DE5	5	-	-	-	3	5	75	25	75	100

Pre-requisite:

Knowledge of forces, motion, and energy.

Learning Objectives:

- 1. To develop an understanding of the Universe's formation, structure, and the dynamic processes shaping planetary systems, including Earth.
- 2. To analyze Earth's geological and biological evolution, and assess human activities' effects on climate, ecosystems, and natural resources.

Course Outcomes

On the s	uccessful completion of the course, students will be able to:	
1.	recall the origin of the Universe, the Solar System, and Earth's physical	K1
	characteristics.	
2.	outline the composition and features of the geosphere, hydrosphere,	K2
	atmosphere, cryosphere, and biosphere.	
3.	understand platetectonics, earthquakes, volcanoes, ocean currents, and	K2
	Atmospheric circulation.	
4.	Apply knowledge of Earth's geological and biological evolution to analyze	K3
	human impacts like pollution, climate change, and biodiversity	
	loss.	
5.	Analyze Earth's climate, historical changes, natural cycles, and the Indian	K4
	Monsoon system.	

K1-Remember;K2-Understand;K3–Apply;K4-Analyse

Units	Contents	No.of Hours
Ι	THE EARTH AND THE UNIVERSE: Origin of universe - Creation of elements and earth - Introduction to various branches of Earth Sciences – General characteristics and origin of the Universe - The Milky Way galaxy - Solar system - Earth's orbit and spin - The Moon's orbit and spin - The terrestrial and Jovian planets – Meteorites & Asteroids-Earth in the Solar system–Origin-size–shape	15
	mass– density-Rotational and revolution parameters and it sage.	
Оп	STRUCTURE OF EARTH: Mass – Dimensions - Shape and topography - Internal structure - Magnetic field - Geothermal energy. The Hydrosphere: The oceans, their extent, depth, volume, chemical composition. River systems - The Atmosphere: variation of temperature-Density and composition with altitude - clouds. The Cryosphere: Polar caps and ice sheets. Mountain glaciers. The Biosphere: Plants and animals. Chemical composition-	15

	mass. Marine and land organisms.	
	DYNAMICAL PROCESSES: Origin of the magnetic field – Source of	
	geothermal energy - Convection in Earth's core and production of its magnetic	
III	field – Mechanical layering of the Earth - Introduction to geophysical methods of	
	earth investigations - Concept of plate tectonics - continental drift - Origin of	15
	oceans-Continents-Mountains and rift valleys-Earthquake and	
	Volcanoes—Oceanic current system and effect of Coriolis forces.	
	CLIMATE: Earth's temperature and Greenhouse effect -Greenhouse gas	
	emissions - Climate change – Paleo climate and recent climate changes - The	
IV	Indian monsoon system - Biosphere: Water cycle - Carbon cycle - Nitrogen cycle	
	- Phosphorous cycle - The role of cycles in maintaining a steady state-	15
	Atmospheric circulation-Weather and climatic changes-Earth's	
	Heat budget-Cyclones.	
	EVOLUTION: Time line of major geological and biological events - Origin of	
	life on Earth - Role of the biosphere in shaping the environment - Future of	
V	evolution of the Earth and solar system: Disturbing the Earth – Contemporary	
	dilemmas - Human population growth - Atmosphere: Air pollution -	15
	Hydrosphere: Fresh water depletion - Geosphere: Chemical effluents-Nuclear	
	waste-Biosphere: Biodiversity loss-Deforestation-	
	Robustness and fragility of eco systems.	

Self-study	Green house effect-Green house gas emissions-Climate change-Deforestation-
	Robustness and fragility of ecosystems.

Text Books:

- 1. Jay Melosh H, 2011. Planetary Surface Processes, Cambridge University Press, Cambridge.
- 2. Emiliani C, 2007. *Planet Earth-Cosmology, Geology and the Evolution of Life and Environment,* Cambridge University Press, New York.
- 3. Fowler CMR, 2004.*The Solid Earth:An Introduction to Global Geophysics*, University of London, Royal Holloway.
- 4. FrankD. Stacey, PaulM. Davis,2008. Physics of the Earth, Cambridge University Press, Cambridge.

Reference Books:

- 1. JohnHarte, 1988. *Consider a Spherical Cow:A course in environmental problem solving,* University Science Books, New Jersey.
- 2. Peter McLaren, Donald Duff, Arthur Holmes,1 993. *Holme's Principles of Physical Geology*. Chapman & Hall, NewYork.
- *3.* Telford WM, GeldartLP, SheriffRE, 1990. *Applied Geophysics*, Cambridge University Press, Cambridge.
- 4. William Lowrie, 1998. *Fundamentals of Geophysics*, Cambridge University Press, Cambridge.
- 5. John M. Reynolds,2011. *An Introduction to Applied and Environmental Geophysics,* Wiley Publications, New Jersey.

WebResources:

- 1. https://www.ncbi.nlm.nih.gov/books/NBK230211/
- 2. https://chem.libretexts.org/Bookshelves/Environmental_Chemistry/Geochemistry_(Lower)/0 2%3A_The_Hydrosphere/2.02%3A_The_hydrosphere_and_the_oceans
- 3. https://cluin.org/characterization/technologies/default2.focus/sec/Geophysical_Methods/cat /Overview/
- 4. https://bio.libretexts.org/Bookshelves/Ecology/Environmental_Science_(Ha_and_Schleiger)/02%3A_Ecology/2.04%3A_Ecosystems/2.4.03%3A_Biogeochemical_Cycles

<u>CO1</u>	PO1											
	PUI	PO2	PO3	PO4					UTCO PSO2	PSO3	PSO4	PSO:
	3	2	3	3	2	3	3	2	3	2	2	2
CO2	3	1	3	3	2	3	1	2	2	1	1	2
CO3	3	3	3	2	2	3	2	2	3	2	2	2
CO4	3	2	3	2	3	3	2	2	2	2	2	2
CO5	3	3	3	2	2	3	2	2	3	2	2	2
TOTAL	15	11	15	12	11	15	10	10	13	9	9	10
AVERAGE	3	2.2	3	2.4	2.2	3	2	2	2.6	1.8	1.8	2
				2 54	nong '	2 Mod	ium 1	Low				
TOTAL					6	57	M	J				

MAPPINGWITHPROGRAMMEOUTCOMES AND

5. https://earth.org/the-biggest-environmental-problems-of-our-lifetime/

PU 131

SEMESTER VI DISCIPLINE SPECIFIC ELECTIVE IV: c) BIOPHYSICS

Course Code	L	Т	Р	S	Credits	Inst.Hours	Total	Marks		
							Hours	CIA	External	Total
PU236DE6	5				3	5	75	25	75	100

Pre-requisite:

Fundamental concepts of Physics and Biology.

Learning Objectives:

- 1. To understand the fundamental principles involved in cell function maintenance, macromolecular structures involved in propagation of life and the biophysical function of membrane and neuron.
- 2. To understand the physical principles behind the various techniques available for interrogating biological macromolecules.

Course Outcomes

On the	e successful completion of the course, student will be able to:	
1	recall fundamental concepts of computational, quantum, and soft matter	K1
	Biophysics and quantum effects in biological systems.	
2	understand and explain the principles behind biophysical imaging techniques	K2
	And biomechanics of cytoskeletal structures.	
3	apply Monte Carlo methods, molecular docking techniques, and artificial	K3
	intelligence tools to model biomolecular interactions.	
4	analyze the impact of extreme environmental conditions on biomolecular	K4
	stability and evolutionary adaptations.	
5	Integrate biophysical principles to design innovative applications in drug	K5
	delivery, bio engineering, and quantum sensors.	
	K1 Demonstran K2 Hadamtan ti K2 Angles K4 Angles K5 Feelaste	1

K1-Remember; K2-Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate

Units	Contents	No.of Hour s
I	COMPUTATIONAL BIOPHYSICS: Introduction to Molecular Dynamics Simulations-Monte Carlo Methods in Biophysics-Bioinformatics: Protein Structure Prediction & Molecular Docking – Modeling Biomolecular Interactions - Applications of Artificial Intelligence (AI) in Biophysics.	15
п	SOFTMATTER BIOPHYSICS: Basics of Colloids, Gels, and Liquid Crystals-Self-Assembly in Biological Systems (Micelles, Liposomes)- Biopolymer Physics (Mechanical Properties of DNA & Proteins)- Biomechanics of Cytoskeleton - Applications in Drug Delivery & Bioengineering.	15

Ш	QUANTUM BIO PHYSICS: Quantum Mechanics in Biology: Quantum Tunneling in Enzymes- Role of Quantum Coherence in Photosynthesis-Spin Chemistry & Magnetic Effects on Biochemical Reactions-Quantum effects inDNA Mutation & Replication-Future	15
IV	Applications:Quantum Sensors in Biology. BIO FLUID MECHANICS&BIOPHYSICAL IMAGING: Blood Flow Dynamics &Viscosity-Fluid Mechanics in Respiratory and Circulatory Systems-MRI, PET, CT & Ultrasound in Biological Imaging-Optical Tweezers & Laser Trapping inBiophysics-Advanced Imaging: Super-Resolution Microscopy & Atomic Force Microscopy (AFM).	15
V	EVOLUTIONARY&ENVIRONMENTALBIOPHYSICS: Biophysics of Evolution: Natural Selection & Molecular Evolution- Extreme Biophysics: Adaptation to Extreme Environments (Deep- Sea, High Altitude, Space)- Climate Change & Biophysics: Impact on Biomolecular Stability- Biodiversity & Biophysical Adaptations- Astro biophysics: Possibilities of Life in Extra terrestrial Environments.	15
	Total	75
Self	Study Protein Structure, Colloids, Quantum Sensors, Advanced Imaging	g Biomolecular

Textbooks:

- 1. Chandran, K.B.2007. Biofluid Mechanics: The Human Circulation. CRC Press.
- 2. Bejan, A. 2016. The Physics of Life: The Evolution of Everything. St. Martin's Press. **Reference Books:**
 - 1. Phillips, R. 2012. Computational Biophysics of the Cell. Cambridge University Press.
 - 2. Cooper, G.M. 2013. The Cell: A Molecular Approach. ASM Press, Washington.
 - 3. Jones, R.A.L. 2002. Soft Condensed Matter.Oxford University Press.
 - 4. Bassereau, P., & Sens, P. 2018. Physics of Biological Membranes. Springer.
 - 5. Bejan, A. 2016. The Physics of Life: The Evolution of Everything. St. Martin's Press.

Web Resources:

- 1. https://www.nature.com/subjects/biophysics
- 2. https://pdb101.rcsb.org/

Stability

- 3. https://www.ks.uiuc.edu/Research/membranes/
- 4. https://www.nist.gov/pml/radiation-biophysics
- 5. https://www.ks.uiuc.edu/Research/biophysics/

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

							LOII	10 00	1000			
Y	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	2	2	2	3	3	3	3	2
CO2	3	3	3	2	3	3	3	2	3	3	3	3
CO3	3	3	3	3	3	3	3	3	3	3	3	3
CO4	3	3	3	3	3	3	3	3	3	3	3	3
CO5	2	3	3	3	3	3	3	3	3	3	3	3
TOTAL	14	15	15	14	14	14	14	14	15	15	15	14
AVERAGE	2.8	3	3	2.8	2.8	2.8	2.8	2.8	3	3	3	2.8

3-Strong, 2-Medium, 1-Low

SEMESTER VI PROFESSIONAL COMPETENCY SKILL II: BASIC ELECTRICALCIRCUITTROUBLESHOOTING

-					0111001			10		
Course Code	L	Т	P	S	Credits	Inst. Hours	Total	Marks		
							Hours	CIA	External	Total
PU236PS1	1	-	1	-	2	2	30	25	75	100

Pre-requisite: Understanding of the basic troubleshooting skills in electrical circuits and programming language

Learning Objectives

- 1. To acquire knowledge on the basic electrical parameters, circuits and wiring.
- 2. To understand the concept of electrical devices and fundamentals needed for electrical circuit trouble shooting skills.

Course Outcomes

On th	e successful completion of the course, students will be able to:	
1	recall the basic definitions and units of electrical quantities	K1,K2
2	analyze the circuit elements and their connections and develop their own	K4
	circuits using electrical wiring	
3	compare the Physics concepts behind various electrical instruments and appliances	K3
	(Voltmeter, Ammeter, Incandescent lamp, fluorescent bulb, choke and Starter) and	
	work with open-source Arduino Software	
	Integrated Development Environment(IDE).	
4	demonstrate uses of tester and Multimeter, LDR, Microphone,	K4
	loudspeaker, etc.	
5	test for the working of electrical circuits and appliances(musicbell,	K5
	Lamp controlled by switch, etc.,)	

K1–Remember;K2-Understand;K3–Apply;K4–Analyse;K5–Evaluate

Units	Contents	No.of Hours
	Basic Electrical Circuits and Components	
Ι	Symbols of electrical elements - Resistors - Conductors - Inductor -	6
	Capacitor and transformer –Single phase and three phase-Star and delta	
	connections - Rules of electric connections - Study of motors and	
	Generators.	
	Electrical Wiring	
II	Systems of supply – Systems of wiring – Testing of wiring installation –	6
	Materials used for wiring–A lamp controlled by a switch–Earthing-	
	Lamp holders, sockets-Fuse base- Distribution box-Trip switches	
Ш	Interfacing Sensors and Actuators	6
U'	Arduino Humidity Sensor-Arduino Temperature Sensor-Arduino Water	
	Detector Sensor-Arduino PIR Sensor-Arduino Ultrasonic Sensor.	
	Hands on trainingI	
	a. Uses of tester & Multimeter.	
	b. A lamp controlled by a switch with fuse circuit and lamp controlled	
IV	by two switches.	6
	c. Calling bell.(demo)	
	d. Florescent lamp wiring and testing.	
	e. Music bell.	
V	Hands on training II	6

f.	LDR application.	
g.	Working of a relay.	
h.	Microphone–amplifier –Loudspeaker setup.	
i.	Blinking LED	
j.	Domestic sensors	
Total		30

Number of lamp search controlled by its switch Self-study Textbook

> Course material prepared by the Department of Physics, Holy Cross College (Autonomous), Nagercoil.

Reference Books

- 1. Arnold R.B.(1986). A first electronics course.(1sted.).Cheltenham,England: Stanley Thornes (Publishers) Ltd.
- 2. Theraja B. L., A text book in Electrical Technology(23rded.). NewDelhi:S. Chand and Company.

Web Resources

- 1. https://BasicElectricalTroubleshooting(youtube.com)
- 2. https://www.skillcatapp.com/post/electrical-troubleshooting-a-complete-guide
- 3. https://thecircuitdetective.com/

MAPPINGWITHPROGRAMMEOUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

SEMESTER VI GENDER EQUITY AND INCLUSIVITY

Course	т	т	р	c	Credits	Inst.	Total	Marks		
Code	L		ľ	ъ	Creans	Hours	Hours	CIA	External	Total
UG236GE1	1	-	-	-	1	1	15	50	50	100

Learning Objectives

- 1. To understand the challenges faced by women in the society.
- 2. To analyze the legitimate rights and laws that aid women to march towards emancipation and empowerment.

.

	Course Outcomes		
On the successful completion of the course, student will be able to:			
1	interpret the life struggles of women and to promote equality	K1	
2	identify the socio-cultural and religious practices that subjugate women	K2	
3	probe deep into the root cause of marginalization of women and to promote an inclusive nature	К3	
4	investigate the challenges faced by women in practical life	K4	
5	evaluate exploitation of women as commercial commodities in advertisements and media	K5	

K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze; K5 – Evaluate

Unit	Contents	No. of Hours
Ι	Life Struggle of a Woman: Challenges faced by girl students, education and religion, woman and society, working environment.	3
II	Cultural Traits: Myths and religious texts, opposition and rebuttal, contemporary literature, cultural decay, opportunities provided by social media.	3
ш	Women's Rights: Democratic women's association, Laws for women's rights, essential legal rights of girl child in India, gender justice, millennium development goals, Political parties.	3
IV	Women's Liberation: Struggle for social rebirth, role of government and NGO's- self-help group for women, Indian political of legal profession and gender representation. the supreme courts efforts, challenging patriarchal narratives, global responsibility, women in sustainable development.	3
v	Inclusivity: Equal opportunities for women and men, equal access and opportunities for disabled people, indigenous populations, refugees and migrants - Importance of challenging and redefining gender roles - value and respect towards all gender identities.	3
	TOTAL	15

Reference Books

- 1. Hosoda, M. 2021. Promoting Gender Diversity and Inclusion at Workplace: A Case Study of Japanese Retail and Financial Service Company. Rikkyo University
- 2. Palo, S., Jha, K. K. 2020. Introduction to Gender. Tata Institute of Social Sciences.
- 3. Debois, E. and L. Dumenil. 2005. Through Women's Eyes: An American History With Documents. St. Martin Press.
- 4. Carter, Sarah. Mansell, 1990. Women's Studies: A Guide to Information Sources

5. .Datchana Moorthy Ramu.2020. Gender Equality and Sustainable development Goals, Notion Press.

Web Resources

- https://en.wikipedia.org/wiki/Women%27s_studies 1.
- 2. https://libguides.berry.edu/wgs/reference
- 3. https://www.albany.edu/~dlafonde/women/wssresguide9602
- 4. https://openbooks.library.umass.edu/introwgss/chapter/references-feminist-movements/

went